欢迎前往个人博客 驽马点滴 和视频空间 哔哩哔哩-《挨踢日志》
6.1 我们是如何看到这个世界的
- 需要有光源;
- 光源发出的光有几种情况:
a) 被别的物体吸收
b) 散射出去(反射和折射) - 摄像机接收的光,产生了图片;
一些名词:
散射(scattering)
吸收(absorption)
折射(reflection)或者透射(transmission)
漫反射(diffuse)
高光反射(specular)
着色(shading)
6.2 什么是标准光照模型
标准光照模型是由著名学者裴祥风在1973年提出的。标准光照模型只关心直接光照(direct light),就是那些直接从光源发射出来照射到物体表面后,经过物体表面到一次反射直接进入摄像机的光线。
它的基本方法是,将进入摄像机的光线分为 4 个部分,每个部分使用一种方法来计算其贡献度。这 4 个部分分别是:
自发光(emissive)
直接使用材质的自发光颜色;c(emissive) = m(emissive)漫反射(diffuse)
漫反射光照符合兰伯特定律(Lambert‘s Law):反射光线的强度与表面法线和光源方向之间夹角的余弦值成正比,因此计算公式如下:
c(diffuse) = ( c(light) * m(diffuse) ) * max(0, n·l)高光反射(specular)
反射光 r = 2(l·n)n-l
c(specular) = c(light)m(specular)(max(0, v·r))^m(gloss)
上述模型为 Phong 模型,Blinn 模型引入一个新的矢量: h = (v+l)/|v+l|
光照模型为 c(specular) = c(light)m(specular)(max(0, v·h))^m(gloss)
Blinn 模型在 v 和 l 都是定值的时候,会比较快,否者还是 Phong 比较快一些。环境光(ambient),通常是一个全局变量 c(ambient) = g(ambient)
最后几点:
- 光照模型可以用在顶点着色阶段或者片元着色阶段进行计算,亦是逐顶点光照或者逐像素光照;
- 上述的模型都是经验模型,图形学第一定律:如果它看起来是对的,那么它就是对的;
- 标准光照模型又称为 Phong 光照模型;
- 更改标准光照模型中的高光反射计算模型为 Blinn 算法的光照模型,称为 Blinn-Phong 光照模型;
6.3 Unity 中的环境光和自发光
暂时忽略,未看到有环境光和自发光相关的设置;
6.4 如何在 Unity 中实现漫反射光照模型
Shader "Unity Shaders Book/Chapter 6/Diffuse Vertex-Level" {
Properties {
_Diffuse ("Diffuse", Color) = (1.0, 1.0, 1.0, 1.0)
}
SubShader {
Pass {
Tags {"LightMode"="ForwardBase"}
CGPROGRAM
#include "Lighting.cginc"
#pragma vertex vert
#pragma fragment frag
fixed4 _Diffuse;
struct a2v {
float4 vertex : POSITION;
float3 normal : NORMAL;
};
struct v2f {
float4 pos : SV_POSITION;
fixed3 color : COLOR0;
};
v2f vert(a2v v) {
v2f o;
// o.pos = mul(UNITY_MATRIX_MVP, v.vertex)
o.pos = UnityObjectToClipPos(v.vertex);
// Lighting
fixed3 ambient = UNITY_LIGHTMODEL_AMBIENT.xyz;
// fixed3 worldNormal = normalize(mul(v.normal, (float3x3)unity_WorldToObject));
fixed3 worldNormal = UnityObjectToWorldNormal(v.normal);
fixed3 worldLight = normalize(_WorldSpaceLightPos0.xyz);
fixed3 diffuse = _LightColor0.rgb * _Diffuse.rgb * saturate(dot(worldNormal, worldLight));
o.color = ambient + diffuse;
return o;
}
fixed4 frag(v2f i): SV_Target {
fixed3 c = i.color;
return fixed4(c, 1.0);
}
ENDCG
}
}
Fallback "Diffuse"
}
语法上的变动:
// Upgrade NOTE: replaced '_World2Object' with 'unity_WorldToObject'
// Upgrade NOTE: replaced 'mul(UNITY_MATRIX_MVP,*)' with 'UnityObjectToClipPos(*)'
- _World2Object 被替换为 unity_WorldToObject
- mul(UNITY_MATRIX_MVP,) 被替换为 UnityObjectToClipPos()
- Object Space 中的法线变换到 World Space 中时,Unity 提供了 UnityObjectToWorldNormal( in float3 norm ) 函数;
逐顶点计算更改为逐像素计算
将上述逐顶点的计算更改为逐像素计算:
// Upgrade NOTE: replaced '_World2Object' with 'unity_WorldToObject'
// Upgrade NOTE: replaced 'mul(UNITY_MATRIX_MVP,*)' with 'UnityObjectToClipPos(*)'
Shader "Unity Shaders Book/Chapter 6/Diffuse Pixel-Level" {
Properties {
_Diffuse ("Diffuse", Color) = (1.0, 1.0, 1.0, 1.0)
}
SubShader {
Pass {
Tags {"LightMode"="ForwardBase"}
CGPROGRAM
#include "Lighting.cginc"
#pragma vertex vert
#pragma fragment frag
fixed4 _Diffuse;
struct a2v {
float4 vertex : POSITION;
float3 normal : NORMAL;
};
struct v2f {
float4 pos : SV_POSITION;
fixed3 worldNormal : TEXCOORD0;
};
v2f vert(a2v v) {
v2f o;
o.pos = UnityObjectToClipPos(v.vertex);
o.worldNormal = mul(v.normal, (float3x3)unity_WorldToObject);
return o;
}
fixed4 frag(v2f i): SV_Target {
fixed3 ambient = UNITY_LIGHTMODEL_AMBIENT.xyz;
fixed3 worldNormal = normalize(i.worldNormal);
fixed3 worldLight = normalize(_WorldSpaceLightPos0.xyz);
fixed3 diffuse = _LightColor0.rgb * _Diffuse.rgb * saturate(dot(worldNormal, worldLight));
fixed3 c = ambient + diffuse;
return fixed4(c, 1.0);
}
ENDCG
}
}
Fallback "Diffuse"
}
上述使用的兰伯特光照模型,在光照无法到达的地方,会失去模型表现细节,出现全黑的情况。有一种改善技术被提出来:半兰伯特光照模型。其公式为:
c(diffuse) = c(light)*m(diffuse)*(alpha*n·l + beta)
通常 alpha 和 beta 均取 0.5 。
// Upgrade NOTE: replaced '_World2Object' with 'unity_WorldToObject'
// Upgrade NOTE: replaced 'mul(UNITY_MATRIX_MVP,*)' with 'UnityObjectToClipPos(*)'
Shader "Unity Shaders Book/Chapter 6/Diffuse Pixel-Level Half Lambert" {
Properties {
_Diffuse ("Diffuse", Color) = (1.0, 1.0, 1.0, 1.0)
}
SubShader {
Pass {
Tags {"LightMode"="ForwardBase"}
CGPROGRAM
#include "Lighting.cginc"
#pragma vertex vert
#pragma fragment frag
fixed4 _Diffuse;
struct a2v {
float4 vertex : POSITION;
float3 normal : NORMAL;
};
struct v2f {
float4 pos : SV_POSITION;
fixed3 worldNormal : TEXCOORD0;
};
v2f vert(a2v v) {
v2f o;
o.pos = UnityObjectToClipPos(v.vertex);
o.worldNormal = mul(v.normal, (float3x3)unity_WorldToObject);
return o;
}
fixed4 frag(v2f i): SV_Target {
fixed3 ambient = UNITY_LIGHTMODEL_AMBIENT.xyz;
fixed3 worldNormal = normalize(i.worldNormal);
fixed3 worldLight = normalize(_WorldSpaceLightPos0.xyz);
fixed halfLambert = dot(worldNormal, worldLight)*0.5 + 0.5;
fixed3 diffuse = _LightColor0.rgb * _Diffuse.rgb * halfLambert;
fixed3 c = ambient + diffuse;
return fixed4(c, 1.0);
}
ENDCG
}
}
Fallback "Diffuse"
}
6.5 如何在 Unity 中实现高光反射模型
高光反射模型的计算公式为:
c(specular) = c(light)*m(specular)*(max(0, r·v))^m(gloss)
其中:
- c(light) 由 _LightColor0.rgb 获得
- m(specular) 通过材质面板获取
- r 反射光线可以由 2·(l·n) - l 计算出来,其中 l 是光源方向(-l 是光照方向,注意二者的区别:光源方向是指向光源,光照方向是从光源发出的方向),Unity 的 Cg 提供了计算反射光的函数 reflect(i, n) 其中, i 是入射方向,n 是法线方向;
- v 是视角方向;
对应的 Shader:
// Upgrade NOTE: replaced '_World2Object' with 'unity_WorldToObject'
// Upgrade NOTE: replaced 'mul(UNITY_MATRIX_MVP,*)' with 'UnityObjectToClipPos(*)'
Shader "Unity Shaders Book/Chapter 6/Specular Vertex-Level" {
Properties {
_Diffuse ("Diffuse", Color) = (1.0, 1.0, 1.0, 1.0)
_Specular ("Specular", Color) = (1.0, 1.0, 1.0, 1.0)
_Gloss ("Gloss", Range(8.0, 256)) = 20
}
SubShader {
Pass {
Tags {"LightMode"="ForwardBase"}
CGPROGRAM
#include "Lighting.cginc"
#pragma vertex vert
#pragma fragment frag
fixed4 _Diffuse;
fixed4 _Specular;
fixed _Gloss;
struct a2v {
float4 vertex : POSITION;
float3 normal : NORMAL;
};
struct v2f {
float4 pos : SV_POSITION;
fixed3 color : COLOR0;
};
v2f vert(a2v v) {
v2f o;
// o.pos = mul(UNITY_MATRIX_MVP, v.vertex)
o.pos = UnityObjectToClipPos(v.vertex);
// Common Variables
fixed3 worldNormal = UnityObjectToWorldNormal(v.normal);
fixed3 worldLightDir = normalize(_WorldSpaceLightPos0.xyz);
// Ambient Lighting
fixed3 ambient = UNITY_LIGHTMODEL_AMBIENT.xyz;
// Diffuse Lighting
fixed3 diffuse = _LightColor0.rgb * _Diffuse.rgb * saturate(dot(worldNormal, worldLightDir));
// Specular Lighting
fixed3 reflectDir = normalize(reflect(-worldLightDir, worldNormal));
fixed3 viewDir = normalize(_WorldSpaceCameraPos.xyz - mul(unity_ObjectToWorld, v.vertex));
fixed3 specular = _LightColor0.rgb * _Specular.rgb * pow(saturate(dot(reflectDir, viewDir)), _Gloss);
// Summery of Lightings
o.color = ambient + diffuse + specular;
return o;
}
fixed4 frag(v2f i): SV_Target {
fixed3 c = i.color;
return fixed4(c, 1.0);
}
ENDCG
}
}
Fallback "Specular"
}
逐像素高光反射
// Upgrade NOTE: replaced '_World2Object' with 'unity_WorldToObject'
// Upgrade NOTE: replaced '_World2Object' with 'unity_WorldToObject'
// Upgrade NOTE: replaced 'mul(UNITY_MATRIX_MVP,*)' with 'UnityObjectToClipPos(*)'
Shader "Unity Shaders Book/Chapter 6/Specular Pixel-Level" {
Properties {
_Diffuse ("Diffuse", Color) = (1.0, 1.0, 1.0, 1.0)
_Specular ("Specular", Color) = (1.0, 1.0, 1.0, 1.0)
_Gloss ("Gloss", Range(8.0, 256)) = 20
}
SubShader {
Pass {
Tags {"LightMode"="ForwardBase"}
CGPROGRAM
#include "Lighting.cginc"
#pragma vertex vert
#pragma fragment frag
fixed4 _Diffuse;
fixed4 _Specular;
fixed _Gloss;
struct a2v {
float4 vertex : POSITION;
float3 normal : NORMAL;
};
struct v2f {
float4 pos : SV_POSITION;
float3 worldNormal: TEXCOORD0;
float3 worldPos: TEXCOORD1;
};
v2f vert(a2v v) {
v2f o;
// o.pos = mul(UNITY_MATRIX_MVP, v.vertex)
o.pos = UnityObjectToClipPos(v.vertex);
o.worldNormal = mul(v.normal, (float3x3)unity_WorldToObject);
// o.worldNormal = mul((float3x3)unity_ObjectToWorld, v.normal);
o.worldPos = mul(unity_ObjectToWorld, v.vertex);
return o;
}
fixed4 frag(v2f i): SV_Target {
// Common Variables
fixed3 worldNormal = normalize(i.worldNormal);
fixed3 worldLightDir = normalize(_WorldSpaceLightPos0.xyz);
// Ambient Lighting
fixed3 ambient = UNITY_LIGHTMODEL_AMBIENT.xyz;
// Diffuse Lighting
fixed3 diffuse = _LightColor0.rgb * _Diffuse.rgb * saturate(dot(worldNormal, worldLightDir));
// Specular Lighting
fixed3 reflectDir = normalize(reflect(-worldLightDir, worldNormal));
fixed3 viewDir = normalize(_WorldSpaceCameraPos.xyz - i.worldPos.xyz);
fixed3 specular = _LightColor0.rgb * _Specular.rgb * pow(saturate(dot(reflectDir, viewDir)), _Gloss);
// Summery of Lightings
fixed3 c = ambient + diffuse + specular;
return fixed4(c, 1.0);
}
ENDCG
}
}
Fallback "Specular"
}
Blinn-Phong 高光反射模型
// Upgrade NOTE: replaced '_World2Object' with 'unity_WorldToObject'
// Upgrade NOTE: replaced '_World2Object' with 'unity_WorldToObject'
// Upgrade NOTE: replaced 'mul(UNITY_MATRIX_MVP,*)' with 'UnityObjectToClipPos(*)'
Shader "Unity Shaders Book/Chapter 6/Specular Pixel-Level Blinn-Phong" {
Properties {
_Diffuse ("Diffuse", Color) = (1.0, 1.0, 1.0, 1.0)
_Specular ("Specular", Color) = (1.0, 1.0, 1.0, 1.0)
_Gloss ("Gloss", Range(8.0, 256)) = 20
}
SubShader {
Pass {
Tags {"LightMode"="ForwardBase"}
CGPROGRAM
#include "Lighting.cginc"
#pragma vertex vert
#pragma fragment frag
fixed4 _Diffuse;
fixed4 _Specular;
fixed _Gloss;
struct a2v {
float4 vertex : POSITION;
float3 normal : NORMAL;
};
struct v2f {
float4 pos : SV_POSITION;
float3 worldNormal: TEXCOORD0;
float3 worldPos: TEXCOORD1;
};
v2f vert(a2v v) {
v2f o;
// o.pos = mul(UNITY_MATRIX_MVP, v.vertex)
o.pos = UnityObjectToClipPos(v.vertex);
o.worldNormal = mul(v.normal, (float3x3)unity_WorldToObject);
// o.worldNormal = mul((float3x3)unity_ObjectToWorld, v.normal);
o.worldPos = mul(unity_ObjectToWorld, v.vertex);
return o;
}
fixed4 frag(v2f i): SV_Target {
// Common Variables
fixed3 worldNormal = normalize(i.worldNormal);
fixed3 worldLightDir = normalize(_WorldSpaceLightPos0.xyz);
// Ambient Lighting
fixed3 ambient = UNITY_LIGHTMODEL_AMBIENT.xyz;
// Diffuse Lighting
fixed3 diffuse = _LightColor0.rgb * _Diffuse.rgb * saturate(dot(worldNormal, worldLightDir));
// Specular Lighting
// fixed3 reflectDir = normalize(reflect(-worldLightDir, worldNormal));
fixed3 viewDir = normalize(_WorldSpaceCameraPos.xyz - i.worldPos.xyz);
fixed3 halfDir = normalize(worldLightDir + viewDir);
fixed3 specular = _LightColor0.rgb * _Specular.rgb * pow(saturate(dot(worldNormal, halfDir)), _Gloss);
// Summery of Lightings
fixed3 c = ambient + diffuse + specular;
return fixed4(c, 1.0);
}
ENDCG
}
}
Fallback "Specular"
}
6.6 使用 Unity 内置函数
UnityCG.cginc 中一些常用的帮助函数
输入:模型空间中的顶点
输出:世界空间中从该点到摄像机的方向
inline float3 WorldSpaceViewDir( in float4 localPos )
{
float3 worldPos = mul(unity_ObjectToWorld, localPos).xyz;
return UnityWorldSpaceViewDir(worldPos);
}
输入: 世界空间中的顶点
输出:世界空间中从该点到摄像机的方向
inline float3 UnityWorldSpaceViewDir( in float3 worldPos )
{
return _WorldSpaceCameraPos.xyz - worldPos;
}
输入:模型空间中到顶点
输出:模型空间中从该点到摄像机的方向
inline float3 ObjSpaceViewDir( in float4 v )
{
float3 objSpaceCameraPos = mul(unity_WorldToObject, float4(_WorldSpaceCameraPos.xyz, 1)).xyz;
return objSpaceCameraPos - v.xyz;
}
输入:模型空间中的顶点坐标
输出:世界空间中,从该点到光源的方向
inline float3 WorldSpaceLightDir( in float4 localPos )
{
float3 worldPos = mul(unity_ObjectToWorld, localPos).xyz;
return UnityWorldSpaceLightDir(worldPos);
}
备注:仅可用于向前渲染中,没有归一化。
输入:世界空间中的顶点坐标
输出:世界空间中从该点到光源到方向
inline float3 UnityWorldSpaceLightDir( in float3 worldPos )
{
#ifndef USING_LIGHT_MULTI_COMPILE
return _WorldSpaceLightPos0.xyz - worldPos * _WorldSpaceLightPos0.w;
#else
#ifndef USING_DIRECTIONAL_LIGHT
return _WorldSpaceLightPos0.xyz - worldPos;
#else
return _WorldSpaceLightPos0.xyz;
#endif
#endif
}
备注:仅可用于向前渲染中,没有归一化。
输入:模型空间中的顶点坐标
输出:模型空间中从该点到光源的方向
inline float3 ObjSpaceLightDir( in float4 v )
{
float3 objSpaceLightPos = mul(unity_WorldToObject, _WorldSpaceLightPos0).xyz;
#ifndef USING_LIGHT_MULTI_COMPILE
return objSpaceLightPos.xyz - v.xyz * _WorldSpaceLightPos0.w;
#else
#ifndef USING_DIRECTIONAL_LIGHT
return objSpaceLightPos.xyz - v.xyz;
#else
return objSpaceLightPos.xyz;
#endif
#endif
}
备注:仅可用于向前渲染中,没有归一化。
欢迎前往个人博客 驽马点滴 和视频空间 哔哩哔哩-《挨踢日志》