MegEngine 使用小技巧:如何做 MegCC 的模型性能评测

MegCC 是一个深度学习模型编译器,具有以下特点:

  • 极轻量级运行时:只在二进制文件中保留所需的计算内核。例如,MobileNet v1 的81KB运行时间
  • 高性能:每个操作都经过专家精心优化
  • 便携:只生成计算代码,易于在 Linux、Android、TEE、BareMetal 上编译和使用
  • Low Memory Usage while Boot Instantly:模型优化和内存规划在编译时生成。获得最先进的内存使用率,并且在推理过程中不花费额外的 CPU

MegCC 支持了基础的 Benchmark 模块用于测试各类模型的推理性能,获取推理时各个 Kernel 的性能数据,分析模型性能瓶颈。

如何使用 MegCC 基准测试

介绍

MegCC Benchmark 是一个简单的工具,可以在 MegCC 中获取不同模型的基准测试结果,文件结构如下所示:

├── clean.sh
├── CMakeLists.txt
├── main.cpp
├── model
│   ├── model_arm.json
│   ├── model_riscv.json
│   ├── model_x86.json
│   └── request.txt
├── python
│   ├── example.py
│   ├── format.sh
│   └── src
│       ├── benchmark.py
│       └── models.py
├── README.md
├── src
│   ├── benchmark.h
│   ├── build_config.h.in
│   ├── CCbenchmark.cpp
│   ├── CCbenchmark.h
│   ├── MGEbenchmark.cpp
│   └── MGEbenchmark.h
└── tools
    ├── cc_analysis.py
    └── inference_visual.py

在 src 中,它是一个 c++ 应用程序,用于在不同平台上运行基准测试结果。在 python 中,包含了模型转换,其他相关准备工作和基准测试示例,并给出了一些可用来分析基准测试结果工具脚本

支持模型

mobilenetv2、resnet18、efficientnetb0 shufflenetv2 vgg16

要求

mgeconvert > v.1.0.2
onnx==1.11.0
torch==1.10.0
cmake >=3.15.2
clang
ninja
torchvision==0.11.1`

mgeconvert 可以通过以下命令安装:


git clone https://github.com/MegEngine/mgeconvert.git
cd mgeconvert
git checkout master
python3 -m pip install . --user --install-option="--targets=onnx"

获取模型并运行基准示例

cd megcc/benchmark
export MEGCC_MGB_TO_TINYNN_PATH=<your_mgb_to_tinynn_path>
python3  python/example.py

example 会从 torchvision 下载对应模型并转换为 onnx, onnx 模型通过 mgeconvert 以及mgb-to-tiynn 转换为 megcc 模型

如果你想在其他平台上运行,请参考示例在 BenchmarkRunner 中添加你新的 run_platform_xxx 函数,示例给出了一个ssh远程设备测试模板

分析megcc日志

example.py 运行结束后,会在 benchmark 目录下生成 output 目录,里面包含了模型的推理 log 以及 profile log,这些 log 可以用相关分析脚本可视化进行进一步的分析利用

生成的 log 示例如下:

output/
├── megcc-x86-efficientnetb0-0-log-local.txt
├── megcc-x86-efficientnetb0-3-log-local.txt
├── megcc-x86-mobilenetv2-0-log-local.txt
├── megcc-x86-mobilenetv2-3-log-local.txt
├── megcc-x86-resnet18-0-log-local.txt
├── megcc-x86-resnet18-3-log-local.txt
├── megcc-x86-resnet50-0-log-local.txt
├── megcc-x86-resnet50-3-log-local.txt
├── megcc-x86-shufflenetv2-0-log-local.txt
├── megcc-x86-shufflenetv2-3-log-local.txt
├── megcc-x86-vgg11-0-log-local.txt
├── megcc-x86-vgg11-3-log-local.txt
├── megcc-x86-vgg16-0-log-local.txt
└── megcc-x86-vgg16-3-log-local.txt

0 代表只测速的 log, 3 代表 profile 的 log

注意:需安装 matplotlib

可视化不同模型的推理结果

benchmark 下tools/inference_visual.py工具可以用于分析测速日志,获取各个模型推理的性能对照,用法如下:

python3 tools/inference_visual.py output -o figure_dir 

运行完后会在 figure_dir 目录下生成如下所示的性能对照图:

可视化不同内核在不同模型中的分析结果

benchmark 下tools/cc_analysis.py工具可以用于分析profile日志,获取各个模型推理时前10个最耗时的kernel 耗时占比饼图,用法如下:

python3 tools/cc_analysis.py output -o figure_dir

运行完后相关饼图也会在 figure_dir 目录下生成, 示例如下:

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 218,284评论 6 506
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 93,115评论 3 395
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 164,614评论 0 354
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,671评论 1 293
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,699评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,562评论 1 305
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,309评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,223评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,668评论 1 314
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,859评论 3 336
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,981评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,705评论 5 347
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,310评论 3 330
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,904评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,023评论 1 270
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,146评论 3 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,933评论 2 355

推荐阅读更多精彩内容