10 行代码运行对象检测(一个图像识别的 Python 库)

简评:一个 Python 库,帮助开发者快速集成计算机视觉识别(对象检测)的功能。

人工智能中有一个很重要的领域是计算机视觉。

计算机视觉可以通过计算机和软件系统实现图像和场景识别。计算机视觉包括图像识别、物体检测、图像生成、图像分辨率辨析等领域,现在大多数案例都是跟对象检测有关,所以提起计算机视觉总会想到这一方面。

本文会简单介绍现代对象检测的概念,软件开发人员面临的挑战,解决方案以及高性能对象检测的代码教程。

对象识别是指计算机在图像/场景中定位对象并识别每个对象的能力。它广泛应用在人脸识别、车辆识别、行人计数、网络图像、系统安全和无人车等领域。

2012 年深度学习的突破和快速的实用化,让新算法和检测方式发生了质的改变,如 R-CNN,Fast-CGNN,Faster-RCNN,RetinaNet 以及 SSD 和 YOLO 等快速而高度精确的物体检测算法和方法。

不过用这些方法额需要对机器学习、深度学习、数学有着相当的理解,而现在数百万的计算机从业者还打不到这个要求。我们团队几个月前意识到这个问题,并且构建了一个 Python 库 ImageAI,他允许开发者轻松地将计算机视觉技术集成到现有或者新的应用程序中。

GitHub 地址:OlafenwaMoses/ImageAI

想要集成还需要简单的几步:

  1. 电脑上安 Python
  2. 安装 ImageAI 及其依赖
  3. 下载对象检测模型
  4. 运行代码(最少 10 行就 ok)

让我们再展开吧。

  1. 从官网下载并安装 Python 3(https://python.org

2. 通过 pip 安装各种依赖

3.在这个链接下载 RetinaNet 模型文件

ok 你现在已经安装了各种依赖,现在可以来编写对象检测的第一行代码了。

我们先来创建一个 Python 文件并命名(如 FristDetecion.py),然后将下面代码复制其中。将 RetinaNet 模型文件和要检测的图片复制到一个文件夹呢。

FirstDetection.py

from imageai.Detection import ObjectDetection
import os

execution_path = os.getcwd()

detector = ObjectDetection()
detector.setModelTypeAsRetinaNet()
detector.setModelPath( os.path.join(execution_path , "resnet50_coco_best_v2.0.1.h5"))
detector.loadModel()
detections = detector.detectObjectsFromImage(input_image=os.path.join(execution_path , "image.jpg"), output_image_path=os.path.join(execution_path , "imagenew.jpg"))

for eachObject in detections:
    print(eachObject["name"] + " : " + eachObject["percentage_probability"] )

运行代码,然后把结果打印到控制台,然后你能在文件夹内看到新的图像。

检测前:

检测后:

这张图控制台的结果:

person : 55.8402955532074

person : 53.21805477142334

person : 69.25139427185059

person : 76.41745209693909

bicycle : 80.30363917350769

person : 83.58567953109741

person : 89.06581997871399

truck : 63.10953497886658

person : 69.82483863830566

person : 77.11606621742249

bus : 98.00949096679688

truck : 84.02870297431946

car : 71.98476791381836

这张图控制台的结果:

person : 71.10445499420166

person : 59.28672552108765

person : 59.61582064628601

person : 75.86382627487183

motorcycle : 60.1050078868866

bus : 99.39600229263306

car : 74.05484318733215

person : 67.31776595115662

person : 63.53200078010559

person : 78.2265305519104

person : 62.880998849868774

person : 72.93365597724915

person : 60.01397967338562

person : 81.05944991111755

motorcycle : 50.591760873794556

motorcycle : 58.719027042388916

person : 71.69321775436401

bicycle : 91.86570048332214

motorcycle : 85.38855314254761

我们来看看这十行代码的工作原理:

from imageai.Detection import ObjectDetection
import os

execution_path = os.getcwd()

这三行中,第一行导入 ImageAI.Detection 类,第二、三行导入 Python os 类并定义一个变量保存到指定文件夹。

detector = ObjectDetection()
detector.setModelTypeAsRetinaNet()
detector.setModelPath( os.path.join(execution_path , "resnet50_coco_best_v2.0.1.h5"))
detector.loadModel()
detections = detector.detectObjectsFromImage(input_image=os.path.join(execution_path , "image.jpg"), output_image_path=os.path.join(execution_path , "imagenew.jpg"))

这五行代码,第一行定义检测类,第二行设置模型类型 RetinaNet,第三行模型路径,第四行加载模型;第五行调用检测函数并输出图像到指定路径。

for eachObject in detections:
    print(eachObject["name"] + " : " + eachObject["percentage_probability"] )

这两行代码,我们输出所有的结果(名字和概率)。

ImageAI 支持非常多的对象检测自定义,提取每个对象就是其中之一。通过简单的将参数 extract_detected_objects = True 解析为 detectObjectsFromImage 函数,如下所示,就可以创建一个文件夹,提取每个对象并保存到这个文件中。

detections, extracted_images = detector.detectObjectsFromImage(input_image=os.path.join(execution_path , "image.jpg"), output_image_path=os.path.join(execution_path , "imagenew.jpg"), extract_detected_objects=True)

在第一张图中,我们得到了每一个的对象的单独的图片。

ImageAI 提供了很多有用的功能,可用于各种对象检测的自定义任务和生产部署。其中包括:

  • 调整最小概率:默认情况下,50% 以下概率的对象不会显示。如果需要可以自行调整。
  • 自定义对象检测:使用提供的 CustomerObject 类,可以检测一个或者几个特定对象。
  • 检测速度:可以设定 fast、faster、fastest,缩短检测时间
  • 输入输出类型:自定义文件路径,Numpy 数组或者图像文件流的形式输入输出

更多信息可以在这个项目的 GitHub 上面看一下:https://github.com/OlafenwaMoses/ImageAI


原文链接:Object Detection with 10 lines of code
推荐阅读:2018 前端开发框架对比

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,384评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,845评论 3 391
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,148评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,640评论 1 290
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,731评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,712评论 1 294
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,703评论 3 415
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,473评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,915评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,227评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,384评论 1 345
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,063评论 5 340
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,706评论 3 324
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,302评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,531评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,321评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,248评论 2 352

推荐阅读更多精彩内容

  • 图像和视频分析 原文:Images and Video Analysis 译者:飞龙 协议:CC BY-NC-SA...
    布客飞龙阅读 14,409评论 0 94
  • 对于学习要保持开放性的心态,不管学习什么知识,都是我们积累的一部分,不管这知识到底什么时候才会用得上,先去学了再说...
    viper44阅读 208评论 0 0
  • 这次回家,经常跟婆婆待在一起。也没什么距离感,用农村人的话说,都是老老实实的实在人。 ...
    太阳花_崔文杰阅读 554评论 3 16
  • 有一段时间没更新了!最新因为实习的原因心情不好,但是幸好自己调整过来!也恢复正常以后尽量做到两天一更满足自己的求知...
    胖琪的升级之路阅读 396评论 0 2
  • 时间过得好快,从五月五日开始的21天挑战暗线哆唻咪又结束了,每晚木木老师召集大家召开算命大会,她像小蜜蜂一样勤劳...
    墨蘭阅读 310评论 0 4