高颜值火山图绘制脚本

分析背景

    火山图常用于转录组研究中,也能应用于基因组,蛋白质组,代谢组等统计数据。它归根到底是是散点图的一种,它能将统计学中的统计显著性量度(如p value,矫正后的P值)和变化幅度相结合,从而能够帮助人们识别那些变化幅度较大且具有统计学意义的数据(如基因,蛋白等),如下图所示。


图1
图形分解
  • 图中每一点代表所研究的基因,灰色的点代表这些基因在实验组和对照组的表达情况不具有差异性,绿色和红色的点代表上调基因和下调基因。
  • 横坐标log2FC代表差异倍数,离坐标原点越远,说明差异倍数越大
  • 纵坐标-log10(PValue)代表差异结果的显著性,越往上的点,说明差异结果越显著。
  • 图1B与图1A向比较,图1B将实验组和对照组中差异倍数最大的前二十个基因的名称在图中展示出来,包括十个上调基因和十个下调基因,当然在后面小编将教小伙伴们如何将感兴趣的基因(如:抑癌基因,管家基因,促癌基因)展示在图上中。
函数式编程的优势
  • 与零碎的代码相比,反复调用,参数简单易学,对初学者更加友好。
  • 与网页绘图小工具相比,不要要注册,不需要付费,方面经济。
  • 对有经验的程序员,函数式编程能够提高程序员的编程水平,减少代码的重复使用,高效快捷
敲黑板,划重点

    小编今天把小伙伴们转录组分析常用的火山图封闭成函数,并使用ggplot2,小伙伴们拿到函数以后,只需要将数据整理成固定的格式,代入函数中,即可绘制成高质量,高颜值的火山图,用AI小修一下,即可插入到自己的文章中。

分析方法
# 安装R包
if (!requireNamespace("ggplot2", quietly = TRUE))
  install.packages("ggplot2",repos = "https://mirrors.tuna.tsinghua.edu.cn/CRAN/")
if (!requireNamespace("RColorBrewer", quietly = TRUE))
  install.packages("RColorBrewer",repos = "https://mirrors.tuna.tsinghua.edu.cn/CRAN/")
if (!requireNamespace("data.table", quietly = TRUE))
  install.packages("data.table",repos = "https://mirrors.tuna.tsinghua.edu.cn/CRAN/")
# 自定义函数
## 快速读入数据
readFlie=function(input,type,row=T,header=T){
  # input 为读入文件的路径,type为读入文件的类型,格式为‘.txt’或‘.csv’,row=T,将文件的第一列设置为列名
  library(data.table,quietly = TRUE)
  if(type=='txt'){
    dat = fread(input,header = header,sep='\t',stringsAsFactors = F,check.names = F)
    if(row){
      dat = as.data.frame(dat,stringsAsFactors = F)
      rownames(dat) = dat[,1]
      dat = dat[,-1]
    }else{
      dat = as.data.frame(dat,stringsAsFactors = F)
    }
  }else{
    dat = fread(input,header = header,sep=',',stringsAsFactors = F,check.names = F)
    if(row){
      dat = as.data.frame(dat,stringsAsFactors = F)
      rownames(dat) = dat[,1]
      dat = dat[,-1]
    }else{
      dat = as.data.frame(dat,stringsAsFactors = F)
    }
  }
  return(dat)
}
# 保存图片
savePlots=function(path,plot,type=c('pdf','png','tiff')[1],width=10,height=8,dpi=300){
  # path表示保存图片路径,需要加上相应的文件扩展名称
  library(ggplot2)
  if(type=='pdf'){
    ggsave(filename = path,plot = plot,width = width,height = height,device = 'pdf')
  }else if(type=='png'){
    ggsave(filename = path,plot = plot,width = width,height = height,device = 'png',dpi = dpi)
  }else{
    ggsave(filename = path,plot = plot,width = width,height = height,device = 'tiff',dpi = dpi)
  }
}
实战演练


扫描关注微信公众号,后台回复火山图,获取源代码和测试数据

# 读入数据
df = readFlie('./DEGs_result.txt',type = 'txt')
# 绘图
fg=wn_volcano(Symbol = rownames(df),logFC=df$logFC,Pvalue=df$FDR)
# 展示图片
fg
# 保存图片
savePlots(path = './fg.pdf',plot = fg,type = 'pdf',width = 10,height = 8)
savePlots(path = './fg.png',plot = fg,type = 'png',width = 10,height = 8,dpi = 300)
savePlots(path = './fg.tiff',plot = fg,type = 'tiff',width = 10,height = 8,dpi = 600)
高级绘图

图2

    在图1B中,小编给大家提了一下能在火山图中展示自己感兴趣的基因,说到这里,小伙伴们一定猜到了,小编肯定把这个函数写好了。小伙伴们只需要给函数传入特定的基因名称,火山图中就可以展示这个基因,绘制出来的图形如图2A和图2B所示:图2A是函数默认展示的是差异倍数最大的前二十个基因,包括十个上调基因和十个下调基因;图2B是小编想展示P值最小前十个基因。阅读原文,获取高级火山图绘制源代码。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,254评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,875评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,682评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,896评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,015评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,152评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,208评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,962评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,388评论 1 304
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,700评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,867评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,551评论 4 335
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,186评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,901评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,142评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,689评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,757评论 2 351