本文将剖析一下,享元模式在 Java Integer、String 中的应用
享元模式在 Java Integer 中的应用
- 先思考以下代码的输出结果
Integer i1 = 56;
Integer i2 = 56;
Integer i3 = 129;
Integer i4 = 129;
System.out.println(i1 == i2);
System.out.println(i3 == i4);
- 如何判定两个 Java 对象是否相等(也就代码中的“==”操作符的含义)?
- 什么是自动装箱(Autoboxing)和自动拆箱(Unboxing)?
- Java 为基本数据类型提供了对应的包装器类型。具体如下所示:
- 所谓的自动装箱,就是自动将基本数据类型转换为包装器类型。所谓的自动拆箱,也就是自动将包装器类型转化为基本数据类型。具体的代码示例如下所示:
Integer i = 56; //自动装箱
int j = i; //自动拆箱
- 数值 56 是基本数据类型 int,当赋值给包装器类型(Integer)变量的时候,触发自动装箱操作,创建一个 Integer 类型的对象,并且赋值给变量 i。其底层相当于执行了下面这条语句:
Integer i = 59;底层执行了:Integer i = Integer.valueOf(59);
- 反过来,当把包装器类型的变量 i,赋值给基本数据类型变量 j 的时候,触发自动拆箱操作,将 i 中的数据取出,赋值给 j。其底层相当于执行了下面这条语句:
int j = i; 底层执行了:int j = i.intValue();
- 弄清楚了自动装箱和自动拆箱,我们再来看,如何判定两个对象是否相等?不过,在此之前,我们先要搞清楚,Java 对象在内存中是如何存储的。我们通过下面这个例子来说明一下。
User a = new User(123, 23); // id=123, age=23
- 当我们通过“==”来判定两个对象是否相等的时候,实际上是在判断两个局部变量存储的地址是否相同,换句话说,是在判断两个局部变量是否指向相同的对象。
- 现在再回过头来看之前的代码
Integer i1 = 56;
Integer i2 = 56;
Integer i3 = 129;
Integer i4 = 129;
System.out.println(i1 == i2);
System.out.println(i3 == i4);
- 前 4 行赋值语句都会触发自动装箱操作,也就是会创建 Integer 对象并且赋值给 i1、i2、i3、i4 这四个变量。根据刚刚的讲解,i1、i2 尽管存储的数值相同,都是 56,但是指向不同的 Integer 对象,所以通过“==”来判定是否相同的时候,会返回 false。同理,i3==i4 判定语句也会返回 false。
- 不过,上面的分析还是不对,答案并非是两个 false,而是一个 true,一个 false。看到这里,你可能会比较纳闷了。实际上,这正是因为 Integer 用到了享元模式来复用对象,才导致了这样的运行结果。当我们通过自动装箱,也就是调用 valueOf() 来创建 Integer 对象的时候,如果要创建的 Integer 对象的值在 -128 到 127 之间,会从 IntegerCache 类中直接返回,否则才调用 new 方法创建。看代码更加清晰一些,Integer 类的 valueOf() 函数的具体代码如下所示:
public static Integer valueOf(int i) {
if (i >= IntegerCache.low && i <= IntegerCache.high)
return IntegerCache.cache[i + (-IntegerCache.low)];
return new Integer(i);
}
- 实际上,这里的 IntegerCache 相当于,我们上文中讲的生成享元对象的工厂类,只不过名字不叫 xxxFactory 而已。我们来看它的具体代码实现。这个类是 Integer 的内部类,你也可以自行查看 JDK 源码。
/**
* Cache to support the object identity semantics of autoboxing for values between
* -128 and 127 (inclusive) as required by JLS.
*
* The cache is initialized on first usage. The size of the cache
* may be controlled by the {@code -XX:AutoBoxCacheMax=<size>} option.
* During VM initialization, java.lang.Integer.IntegerCache.high property
* may be set and saved in the private system properties in the
* sun.misc.VM class.
*/
private static class IntegerCache {
static final int low = -128;
static final int high;
static final Integer cache[];
static {
// high value may be configured by property
int h = 127;
String integerCacheHighPropValue =
sun.misc.VM.getSavedProperty("java.lang.Integer.IntegerCache.high");
if (integerCacheHighPropValue != null) {
try {
int i = parseInt(integerCacheHighPropValue);
i = Math.max(i, 127);
// Maximum array size is Integer.MAX_VALUE
h = Math.min(i, Integer.MAX_VALUE - (-low) -1);
} catch( NumberFormatException nfe) {
// If the property cannot be parsed into an int, ignore it.
}
}
high = h;
cache = new Integer[(high - low) + 1];
int j = low;
for(int k = 0; k < cache.length; k++)
cache[k] = new Integer(j++);
// range [-128, 127] must be interned (JLS7 5.1.7)
assert IntegerCache.high >= 127;
}
private IntegerCache() {}
}
- 为什么 IntegerCache 只缓存 -128 到 127 之间的整型值呢?
在 IntegerCache 的代码实现中,当这个类被加载的时候,缓存的享元对象会被集中一次性创建好。毕竟整型值太多了,我们不可能在 IntegerCache 类中预先创建好所有的整型值,这样既占用太多内存,也使得加载 IntegerCache 类的时间过长。所以,我们只能选择缓存对于大部分应用来说最常用的整型值,也就是一个字节的大小(-128 到 127 之间的数据)。 - 实际上,JDK 也提供了方法来让我们可以自定义缓存的最大值,有下面两种方式。如果你通过分析应用的 JVM 内存占用情况,发现 -128 到 255 之间的数据占用的内存比较多,你就可以用如下方式,将缓存的最大值从 127 调整到 255。不过,这里注意一下,JDK 并没有提供设置最小值的方法。
//方法一:
-Djava.lang.Integer.IntegerCache.high=255
//方法二:
-XX:AutoBoxCacheMax=255
- 因为 56 处于 -128 和 127 之间,i1 和 i2 会指向相同的享元对象,所以 i1==i2 返回 true。而 129 大于 127,并不会被缓存,每次都会创建一个全新的对象,也就是说,i3 和 i4 指向不同的 Integer 对象,所以 i3==i4 返回 false。
- 实际上,除了 Integer 类型之外,其他包装器类型,比如 Long、Short、Byte 等,也都利用了享元模式来缓存 -128 到 127 之间的数据。比如,Long 类型对应的 LongCache 享元工厂类及 valueOf() 函数代码如下所示:
private static class LongCache {
private LongCache(){}
static final Long cache[] = new Long[-(-128) + 127 + 1];
static {
for(int i = 0; i < cache.length; i++)
cache[i] = new Long(i - 128);
}
}
public static Long valueOf(long l) {
final int offset = 128;
if (l >= -128 && l <= 127) { // will cache
return LongCache.cache[(int)l + offset];
}
return new Long(l);
}
- 在我们平时的开发中,对于下面这样三种创建整型对象的方式,我们优先使用后两种。
Integer a = new Integer(123);
Integer a = 123;
Integer a = Integer.valueOf(123);
- 第一种创建方式并不会使用到 IntegerCache,而后面两种创建方法可以利用 IntegerCache 缓存,返回共享的对象,以达到节省内存的目的。举一个极端一点的例子,假设程序需要创建 1 万个 -128 到 127 之间的 Integer 对象。使用第一种创建方式,我们需要分配 1 万个 Integer 对象的内存空间;使用后两种创建方式,我们最多只需要分配 256 个 Integer 对象的内存空间。
享元模式在 Java String 中的应用
- 刚刚我们讲了享元模式在 Java Integer 类中的应用,现在,我们再来看下,享元模式在 Java String 类中的应用。同样,我们还是先来看一段代码,你觉得这段代码输出的结果是什么呢?
String s1 = "小争哥";
String s2 = "小争哥";
String s3 = new String("小争哥");
System.out.println(s1 == s2);
System.out.println(s1 == s3);
- 上面代码的运行结果是:一个 true,一个 false。跟 Integer 类的设计思路相似,String 类利用享元模式来复用相同的字符串常量(也就是代码中的“小争哥”)。JVM 会专门开辟一块存储区来存储字符串常量,这块存储区叫作“字符串常量池”。上面代码对应的内存存储结构如下所示:
- 不过,String 类的享元模式的设计,跟 Integer 类稍微有些不同。Integer 类中要共享的对象,是在类加载的时候,就集中一次性创建好的。但是,对于字符串来说,我们没法事先知道要共享哪些字符串常量,所以没办法事先创建好,只能在某个字符串常量第一次被用到的时候,存储到常量池中,当之后再用到的时候,直接引用常量池中已经存在的即可,就不需要再重新创建了。
小结
- 在 Java Integer 的实现中,-128 到 127 之间的整型对象会被事先创建好,缓存在 IntegerCache 类中。当我们使用自动装箱或者 valueOf() 来创建这个数值区间的整型对象时,会复用 IntegerCache 类事先创建好的对象。这里的 IntegerCache 类就是享元工厂类,事先创建好的整型对象就是享元对象。
- 在 Java String 类的实现中,JVM 开辟一块存储区专门存储字符串常量,这块存储区叫作字符串常量池,类似于 Integer 中的 IntegerCache。不过,跟 IntegerCache 不同的是,它并非事先创建好需要共享的对象,而是在程序的运行期间,根据需要来创建和缓存字符串常量。