从导数到梯度下降--apple的学习笔记

前言

  一年前就自学过,并且参加过机器学习的培训课。由于现在开始专注学习计算机视觉算法,所以需要复习下数学基础。

  这次学习等于是第二轮系统学习了。我的目的只是兴趣爱好,顺便给我的职场留一条后路或者成为加分项。多学习点技能也没什么不好的。特别是AI时代了。所以我的要求并不是快,也不是要背诵公式,我要的是从理解角度去记忆,并且要应用。否则学到的知识是没有用的。

1.导数的含义

  • 1 从一元函数来讲,它是切线的斜率公式,是速度。
  • 2 “以直代曲”的角度来讲,一元函数是切线,二元函数是切平面。通过导数即为泰勒公式。
  • 3 从向量变换角度来讲,它是线性变换。是个矩阵。

重点:
  导数是变化率。说到率就会想到除法,没错就是自变量的变化率。f'(x)=\frac{f(x+\Delta x)-f(x)}{\Delta x},\Delta x无穷小的时候f'(x)就是在x点切线的斜率。也可以写为f'(x)=\frac{df(x)}{dx},这就更加形象的说明了导数是因变量对自变量的变化率。
  若一元函数F(x)是曲线,二阶导数是一阶导数的变化率,体现了曲线的凹凸性,代表了拐点。三阶导数是二阶导数的变化率,预测了某点之后的趋势是继续凹还是会变凸。这样就可以通过导数来绘制曲线了。
  还有一个比较形象的一阶导数为瞬时速度,二阶导数为加速度(即速度的变化率),三阶导数为类似于刹车的舒适体验感(即加速度的变化率)。

2.偏导数的含义

  对于一元函数来说,偏导数就是导数。对于二元函数来说,偏导数包括对x的导数(此时y为常数,不看做变量参数),同理包括对y的导数。如下为x_0,y_0处的偏导数公式
F'_x(x,y) = \frac{\partial F}{\partial x}\big|_{\substack{x=x_0 \\ y=y_0}}, F'_y(x,y)= \frac{\partial F}{\partial y}\big|_{\substack{x=x_0 \\ y=y_0}}
偏导数有个形象的感觉,如下图。二元函数其实是在三维空间的,如下图只是概念性的加速理解。三维空间可以通过x,y的参数方程添加限制,使F(x,y)变成F(x,y),x(t),y(t)三个方程,最终将t带入x和y变换为F(t)方程。

1.png

3.方向导数的含义

  方向导数是基于偏导数来的。方向导数的意思对于多元函数在某一个方向上的导数(偏导数是方向导数的特例,偏导数仅针对方向x和方向y)。对于某个方向的偏导数,其实可以将此方向用向量法拆分为x和y的分量。
P_0点沿与x轴成夹角\alpha的一条直线移动,这个移动方向可以看作是一个矢量\vec{l}={(cos\alpha,sin\alpha)}
公式如下:
\vec{P}\cdot\vec{l} = \frac{\partial F}{\partial x}cos\alpha+\frac{\partial F}{\partial y}sin\alpha
方向导数(向量)是原向量在某个方向上的投影的变化率

重点:方向导数就是偏导数合成向量与方向向量的内积。

4. 梯度的含义

  梯度是一个向量,它是带方向的。标量场中某一点上的梯度指向标量场增长最快的方向。再描述的具体些就是在空间中的某点,有很多方向,所以方向导数标量的最大值就是梯度值。而梯度的方向就是让其值最大的方向。

原因是内积同角度的值最大cos0^{\circ}=1

5. 梯度下降公式的含义

  重点来了,我前面1-4小结的长篇大论就是为了铺垫梯度下降是cos180^{\circ}=-1即梯度的反方向,则变量率从最大到变化率为反方向的最大,及为下降的最快的方向。
一阶梯度下降的公式也是从一阶泰勒展开式推导的,最终的公式为\theta = \theta_0-\eta\Delta f(\theta_0),通过不断迭代求,当之前的值和当前值小于0.00001后循环终止,求得函数的最小值。

"局部下降最快的方向就是梯度的负方向"是我这次一开始没有看懂的,而一年前死记硬背的。所以今天写了这个笔记。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,125评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,293评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,054评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,077评论 1 291
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,096评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,062评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,988评论 3 417
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,817评论 0 273
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,266评论 1 310
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,486评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,646评论 1 347
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,375评论 5 342
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,974评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,621评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,796评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,642评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,538评论 2 352

推荐阅读更多精彩内容