理解wav2letter++ tutorial

Step1 Data preparation

下载完数据后我们需要预处理数据使其格式能被wav2letter++处理:
cd wav2letter/tutorials/1-librispeech_clean
python3 prepare_data.py --src $W2LDIR/LibriSpeech/ --dst $W2LDIR
python3 prepare_lm.py --dst $W2LDIR
此时生成的data文件夹里存放着预处理后的数据。
prepare_data.py prepares the dataset and tokens file
prepare_lm.py prepares lexicon and language model data
预处理后的每条音频数据都会有四个对应的文件:

  • .flac/.wav audio file(e.g. 000000000.flac)
  • .id identifiers for the file(e.g. file_id 0)
  • .wrd words file containing the transcription(e.g. hello world)
  • .tkn tokens(graphemes) file(e.g. h e l l o | w o r l d, the symbol "|" is used to denote space)

Step 2: Training the Acoustic Model

首先将train.cfg文件中的[...]替换成正确的路径

--datadir=/home/zd/W2Ldemo/
--tokensdir=/home/zd/W2Ldemo/
--rundir=/home/zd/W2Ldemo/saved_models
--archdir=/data/zd/wav2letter/tutorials/1-librispeech_clean/

然后执行:
/data/zd/wav2letter/build/Train train --flagsfile /data/zd/wav2letter/tutorials/1-librispeech_clean/train.cfg
训练后的logs保存在你设置的rundir目录下。

Step3 Decoding

首先将decode.cfg文件中的[...]替换成正确的路径

--datadir=/home/zd/W2Ldemo/
--lexicon=/home/zd/W2Ldemo/lm/lexicon.txt
--lm=/home/zd/W2Ldemo/lm/3-gram.arpa
--am=/home/zd/W2Ldemo/saved_models/librispeech_clean_trainlogs/001_model_data#dev-clean.bin
--sclite=/home/zd/W2Ldemo/decode_logs

然后执行:
/data/zd/wav2letter/build/Decoder --flagsfile /data/zd/wav2letter/tutorials/1-librispeech_clean/decode.cfg
解码后的logs保存在你设置的sclite目录下,查看最后5行log:
tail -n 5 data#test-clean.log

|T|: then i long tried by natural ills received the comfort fast while budding at thy sight my pilgrim's staff gave out green leaves with morning dews impearled 
|P|: then i long tried by natural walls were seized the comfort fast while buying at thy sight my pilgrim staff gave out relies with morning dew impearled 
[sample: 2616, WER: 29.6296%, LER: 12.2581%, slice WER: 18.6255%, slice LER: 8.84388%, progress: 100%]
------
[Decode data/test-clean (2620 samples) in 113.572s (actual decoding time 0.205s/sample) -- WER: 18.6872, LER: 9.02497]

|T| - True transcription
|P| - predicted transcription.
WER - Word Error Rate for current sample.
slice-WER - Overall Word Error Rate in the current thread. (Note that for decoding they divide the work using a ThreadPool)
最后一行显示最终的结果WER: 18.6872, LER: 9.02497

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 217,907评论 6 506
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,987评论 3 395
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 164,298评论 0 354
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,586评论 1 293
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,633评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,488评论 1 302
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,275评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,176评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,619评论 1 314
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,819评论 3 336
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,932评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,655评论 5 346
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,265评论 3 329
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,871评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,994评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,095评论 3 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,884评论 2 354

推荐阅读更多精彩内容