device query

~/samples/NVIDIA_CUDA-9.1_Samples/1_Utilities/deviceQuery$ make

/usr/local/cuda-9.1/bin/nvcc -ccbin g++ -I../../common/inc  -m64    -gencode arch=compute_30,code=sm_30 -gencode arch=compute_35,code=sm_35 -gencode arch=compute_37,code=sm_37 -gencode arch=compute_50,code=sm_50 -gencode arch=compute_52,code=sm_52 -gencode arch=compute_60,code=sm_60 -gencode arch=compute_61,code=sm_61 -gencode arch=compute_70,code=sm_70 -gencode arch=compute_70,code=compute_70 -o deviceQuery.o -c deviceQuery.cpp

/usr/local/cuda-9.1/bin/nvcc -ccbin g++  -m64      -gencode arch=compute_30,code=sm_30 -gencode arch=compute_35,code=sm_35 -gencode arch=compute_37,code=sm_37 -gencode arch=compute_50,code=sm_50 -gencode arch=compute_52,code=sm_52 -gencode arch=compute_60,code=sm_60 -gencode arch=compute_61,code=sm_61 -gencode arch=compute_70,code=sm_70 -gencode arch=compute_70,code=compute_70 -o deviceQuery deviceQuery.o

mkdir -p ../../bin/x86_64/linux/release

cp deviceQuery ../../bin/x86_64/linux/release

~/samples/NVIDIA_CUDA-9.1_Samples/1_Utilities/deviceQuery$ ls

deviceQuery  deviceQuery.cpp  deviceQuery.o  Makefile  NsightEclipse.xml  readme.txt

~/samples/NVIDIA_CUDA-9.1_Samples/1_Utilities/deviceQuery$ ./deviceQuery

./deviceQuery Starting...

CUDA Device Query (Runtime API) version (CUDART static linking)

Detected 1 CUDA Capable device(s)

Device 0: "GeForce GTX 1050"

  CUDA Driver Version / Runtime Version          10.1 / 9.1

  CUDA Capability Major/Minor version number:    6.1

  Total amount of global memory:                1998 MBytes (2095382528 bytes)

  ( 5) Multiprocessors, (128) CUDA Cores/MP:    640 CUDA Cores

  GPU Max Clock rate:                            1455 MHz (1.46 GHz)

  Memory Clock rate:                            3504 Mhz

  Memory Bus Width:                              128-bit

  L2 Cache Size:                                1048576 bytes

  Maximum Texture Dimension Size (x,y,z)        1D=(131072), 2D=(131072, 65536), 3D=(16384, 16384, 16384)

  Maximum Layered 1D Texture Size, (num) layers  1D=(32768), 2048 layers

  Maximum Layered 2D Texture Size, (num) layers  2D=(32768, 32768), 2048 layers

  Total amount of constant memory:              65536 bytes

  Total amount of shared memory per block:      49152 bytes

  Total number of registers available per block: 65536

  Warp size:                                    32

  Maximum number of threads per multiprocessor:  2048

  Maximum number of threads per block:          1024

  Max dimension size of a thread block (x,y,z): (1024, 1024, 64)

  Max dimension size of a grid size    (x,y,z): (2147483647, 65535, 65535)

  Maximum memory pitch:                          2147483647 bytes

  Texture alignment:                            512 bytes

  Concurrent copy and kernel execution:          Yes with 2 copy engine(s)

  Run time limit on kernels:                    No

  Integrated GPU sharing Host Memory:            No

  Support host page-locked memory mapping:      Yes

  Alignment requirement for Surfaces:            Yes

  Device has ECC support:                        Disabled

  Device supports Unified Addressing (UVA):      Yes

  Supports Cooperative Kernel Launch:            Yes

  Supports MultiDevice Co-op Kernel Launch:      Yes

  Device PCI Domain ID / Bus ID / location ID:  0 / 2 / 0

  Compute Mode:

    < Default (multiple host threads can use ::cudaSetDevice() with device simultaneously) >

deviceQuery, CUDA Driver = CUDART, CUDA Driver Version = 10.1, CUDA Runtime Version = 9.1, NumDevs = 1

Result = PASS




~/samples/NVIDIA_CUDA-9.1_Samples/1_Utilities/deviceQuery$ cat deviceQuery.cpp

/*

* Copyright 1993-2015 NVIDIA Corporation.  All rights reserved.

*

* Please refer to the NVIDIA end user license agreement (EULA) associated

* with this source code for terms and conditions that govern your use of

* this software. Any use, reproduction, disclosure, or distribution of

* this software and related documentation outside the terms of the EULA

* is strictly prohibited.

*

*/

/* This sample queries the properties of the CUDA devices present in the system via CUDA Runtime API. */

// Shared Utilities (QA Testing)

// std::system includes

#include <memory>

#include <iostream>

#include <cuda_runtime.h>

#include <helper_cuda.h>

int *pArgc = NULL;

char **pArgv = NULL;

#if CUDART_VERSION < 5000

// CUDA-C includes

#include <cuda.h>

// This function wraps the CUDA Driver API into a template function

template <class T>

inline void getCudaAttribute(T *attribute, CUdevice_attribute device_attribute, int device)

{

    CUresult error =    cuDeviceGetAttribute(attribute, device_attribute, device);

    if (CUDA_SUCCESS != error)

    {

        fprintf(stderr, "cuSafeCallNoSync() Driver API error = %04d from file <%s>, line %i.\n",

                error, __FILE__, __LINE__);

        exit(EXIT_FAILURE);

    }

}

#endif /* CUDART_VERSION < 5000 */

////////////////////////////////////////////////////////////////////////////////

// Program main

////////////////////////////////////////////////////////////////////////////////

int

main(int argc, char **argv)

{

    pArgc = &argc;

    pArgv = argv;

    printf("%s Starting...\n\n", argv[0]);

    printf(" CUDA Device Query (Runtime API) version (CUDART static linking)\n\n");

    int deviceCount = 0;

    cudaError_t error_id = cudaGetDeviceCount(&deviceCount);

    if (error_id != cudaSuccess)

    {

        printf("cudaGetDeviceCount returned %d\n-> %s\n", (int)error_id, cudaGetErrorString(error_id));

        printf("Result = FAIL\n");

        exit(EXIT_FAILURE);

    }

    // This function call returns 0 if there are no CUDA capable devices.

    if (deviceCount == 0)

    {

        printf("There are no available device(s) that support CUDA\n");

    }

    else

    {

        printf("Detected %d CUDA Capable device(s)\n", deviceCount);

    }

    int dev, driverVersion = 0, runtimeVersion = 0;

    for (dev = 0; dev < deviceCount; ++dev)

    {

        cudaSetDevice(dev);

        cudaDeviceProp deviceProp;

        cudaGetDeviceProperties(&deviceProp, dev);

        printf("\nDevice %d: \"%s\"\n", dev, deviceProp.name);

        // Console log

        cudaDriverGetVersion(&driverVersion);

        cudaRuntimeGetVersion(&runtimeVersion);

        printf("  CUDA Driver Version / Runtime Version          %d.%d / %d.%d\n", driverVersion/1000, (driverVersion%100)/10, runtimeVersion/1000, (runtimeVersion%100)/10);

        printf("  CUDA Capability Major/Minor version number:    %d.%d\n", deviceProp.major, deviceProp.minor);

        char msg[256];

        SPRINTF(msg, "  Total amount of global memory:                %.0f MBytes (%llu bytes)\n",

                (float)deviceProp.totalGlobalMem/1048576.0f, (unsigned long long) deviceProp.totalGlobalMem);

        printf("%s", msg);

        printf("  (%2d) Multiprocessors, (%3d) CUDA Cores/MP:    %d CUDA Cores\n",

              deviceProp.multiProcessorCount,

              _ConvertSMVer2Cores(deviceProp.major, deviceProp.minor),

              _ConvertSMVer2Cores(deviceProp.major, deviceProp.minor) * deviceProp.multiProcessorCount);

        printf("  GPU Max Clock rate:                            %.0f MHz (%0.2f GHz)\n", deviceProp.clockRate * 1e-3f, deviceProp.clockRate * 1e-6f);

#if CUDART_VERSION >= 5000

        // This is supported in CUDA 5.0 (runtime API device properties)

        printf("  Memory Clock rate:                            %.0f Mhz\n", deviceProp.memoryClockRate * 1e-3f);

        printf("  Memory Bus Width:                              %d-bit\n",  deviceProp.memoryBusWidth);

        if (deviceProp.l2CacheSize)

        {

            printf("  L2 Cache Size:                                %d bytes\n", deviceProp.l2CacheSize);

        }

#else

        // This only available in CUDA 4.0-4.2 (but these were only exposed in the CUDA Driver API)

        int memoryClock;

        getCudaAttribute<int>(&memoryClock, CU_DEVICE_ATTRIBUTE_MEMORY_CLOCK_RATE, dev);

        printf("  Memory Clock rate:                            %.0f Mhz\n", memoryClock * 1e-3f);

        int memBusWidth;

        getCudaAttribute<int>(&memBusWidth, CU_DEVICE_ATTRIBUTE_GLOBAL_MEMORY_BUS_WIDTH, dev);

        printf("  Memory Bus Width:                              %d-bit\n", memBusWidth);

        int L2CacheSize;

        getCudaAttribute<int>(&L2CacheSize, CU_DEVICE_ATTRIBUTE_L2_CACHE_SIZE, dev);

        if (L2CacheSize)

        {

            printf("  L2 Cache Size:                                %d bytes\n", L2CacheSize);

        }

#endif

        printf("  Maximum Texture Dimension Size (x,y,z)        1D=(%d), 2D=(%d, %d), 3D=(%d, %d, %d)\n",

              deviceProp.maxTexture1D  , deviceProp.maxTexture2D[0], deviceProp.maxTexture2D[1],

              deviceProp.maxTexture3D[0], deviceProp.maxTexture3D[1], deviceProp.maxTexture3D[2]);

        printf("  Maximum Layered 1D Texture Size, (num) layers  1D=(%d), %d layers\n",

              deviceProp.maxTexture1DLayered[0], deviceProp.maxTexture1DLayered[1]);

        printf("  Maximum Layered 2D Texture Size, (num) layers  2D=(%d, %d), %d layers\n",

              deviceProp.maxTexture2DLayered[0], deviceProp.maxTexture2DLayered[1], deviceProp.maxTexture2DLayered[2]);

        printf("  Total amount of constant memory:              %lu bytes\n", deviceProp.totalConstMem);

        printf("  Total amount of shared memory per block:      %lu bytes\n", deviceProp.sharedMemPerBlock);

        printf("  Total number of registers available per block: %d\n", deviceProp.regsPerBlock);

        printf("  Warp size:                                    %d\n", deviceProp.warpSize);

        printf("  Maximum number of threads per multiprocessor:  %d\n", deviceProp.maxThreadsPerMultiProcessor);

        printf("  Maximum number of threads per block:          %d\n", deviceProp.maxThreadsPerBlock);

        printf("  Max dimension size of a thread block (x,y,z): (%d, %d, %d)\n",

              deviceProp.maxThreadsDim[0],

              deviceProp.maxThreadsDim[1],

              deviceProp.maxThreadsDim[2]);

        printf("  Max dimension size of a grid size    (x,y,z): (%d, %d, %d)\n",

              deviceProp.maxGridSize[0],

              deviceProp.maxGridSize[1],

              deviceProp.maxGridSize[2]);

        printf("  Maximum memory pitch:                          %lu bytes\n", deviceProp.memPitch);

        printf("  Texture alignment:                            %lu bytes\n", deviceProp.textureAlignment);

        printf("  Concurrent copy and kernel execution:          %s with %d copy engine(s)\n", (deviceProp.deviceOverlap ? "Yes" : "No"), deviceProp.asyncEngineCount);

        printf("  Run time limit on kernels:                    %s\n", deviceProp.kernelExecTimeoutEnabled ? "Yes" : "No");

        printf("  Integrated GPU sharing Host Memory:            %s\n", deviceProp.integrated ? "Yes" : "No");

        printf("  Support host page-locked memory mapping:      %s\n", deviceProp.canMapHostMemory ? "Yes" : "No");

        printf("  Alignment requirement for Surfaces:            %s\n", deviceProp.surfaceAlignment ? "Yes" : "No");

        printf("  Device has ECC support:                        %s\n", deviceProp.ECCEnabled ? "Enabled" : "Disabled");

#if defined(WIN32) || defined(_WIN32) || defined(WIN64) || defined(_WIN64)

        printf("  CUDA Device Driver Mode (TCC or WDDM):        %s\n", deviceProp.tccDriver ? "TCC (Tesla Compute Cluster Driver)" : "WDDM (Windows Display Driver Model)");

#endif

        printf("  Device supports Unified Addressing (UVA):      %s\n", deviceProp.unifiedAddressing ? "Yes" : "No");

        printf("  Supports Cooperative Kernel Launch:            %s\n", deviceProp.cooperativeLaunch ? "Yes" : "No");

        printf("  Supports MultiDevice Co-op Kernel Launch:      %s\n", deviceProp.cooperativeMultiDeviceLaunch ? "Yes" : "No");

        printf("  Device PCI Domain ID / Bus ID / location ID:  %d / %d / %d\n", deviceProp.pciDomainID, deviceProp.pciBusID, deviceProp.pciDeviceID);

        const char *sComputeMode[] =

        {

            "Default (multiple host threads can use ::cudaSetDevice() with device simultaneously)",

            "Exclusive (only one host thread in one process is able to use ::cudaSetDevice() with this device)",

            "Prohibited (no host thread can use ::cudaSetDevice() with this device)",

            "Exclusive Process (many threads in one process is able to use ::cudaSetDevice() with this device)",

            "Unknown",

            NULL

        };

        printf("  Compute Mode:\n");

        printf("    < %s >\n", sComputeMode[deviceProp.computeMode]);

    }

    // If there are 2 or more GPUs, query to determine whether RDMA is supported

    if (deviceCount >= 2)

    {

        cudaDeviceProp prop[64];

        int gpuid[64]; // we want to find the first two GPUs that can support P2P

        int gpu_p2p_count = 0;

        for (int i=0; i < deviceCount; i++)

        {

            checkCudaErrors(cudaGetDeviceProperties(&prop[i], i));

            // Only boards based on Fermi or later can support P2P

            if ((prop[i].major >= 2)

#if defined(WIN32) || defined(_WIN32) || defined(WIN64) || defined(_WIN64)

                // on Windows (64-bit), the Tesla Compute Cluster driver for windows must be enabled to support this

                && prop[i].tccDriver

#endif

              )

            {

                // This is an array of P2P capable GPUs

                gpuid[gpu_p2p_count++] = i;

            }

        }

        // Show all the combinations of support P2P GPUs

        int can_access_peer;

        if (gpu_p2p_count >= 2)

        {

            for (int i = 0; i < gpu_p2p_count; i++)

            {

                for (int j = 0; j < gpu_p2p_count; j++)

                {

                    if (gpuid[i] == gpuid[j])

                    {

                        continue;

                    }

                    checkCudaErrors(cudaDeviceCanAccessPeer(&can_access_peer, gpuid[i], gpuid[j]));

                        printf("> Peer access from %s (GPU%d) -> %s (GPU%d) : %s\n", prop[gpuid[i]].name, gpuid[i],

                          prop[gpuid[j]].name, gpuid[j] ,

                          can_access_peer ? "Yes" : "No");

                }

            }

        }

    }

    // csv masterlog info

    // *****************************

    // exe and CUDA driver name

    printf("\n");

    std::string sProfileString = "deviceQuery, CUDA Driver = CUDART";

    char cTemp[16];

    // driver version

    sProfileString += ", CUDA Driver Version = ";

#if defined(WIN32) || defined(_WIN32) || defined(WIN64) || defined(_WIN64)

    sprintf_s(cTemp, 10, "%d.%d", driverVersion/1000, (driverVersion%100)/10);

#else

    sprintf(cTemp, "%d.%d", driverVersion/1000, (driverVersion%100)/10);

#endif

    sProfileString +=  cTemp;

    // Runtime version

    sProfileString += ", CUDA Runtime Version = ";

#if defined(WIN32) || defined(_WIN32) || defined(WIN64) || defined(_WIN64)

    sprintf_s(cTemp, 10, "%d.%d", runtimeVersion/1000, (runtimeVersion%100)/10);

#else

    sprintf(cTemp, "%d.%d", runtimeVersion/1000, (runtimeVersion%100)/10);

#endif

    sProfileString +=  cTemp;

    // Device count

    sProfileString += ", NumDevs = ";

#if defined(WIN32) || defined(_WIN32) || defined(WIN64) || defined(_WIN64)

    sprintf_s(cTemp, 10, "%d", deviceCount);

#else

    sprintf(cTemp, "%d", deviceCount);

#endif

    sProfileString += cTemp;

    sProfileString += "\n";

    printf("%s", sProfileString.c_str());

    printf("Result = PASS\n");

    // finish

    exit(EXIT_SUCCESS);

}

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,047评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,807评论 3 386
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,501评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,839评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,951评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,117评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,188评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,929评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,372评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,679评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,837评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,536评论 4 335
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,168评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,886评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,129评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,665评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,739评论 2 351

推荐阅读更多精彩内容

  • CUDA从入门到精通(零):写在前面 本文原版链接: 在老板的要求下,本博主从2012年上高性能计算课程开始接触C...
    Pitfalls阅读 3,605评论 1 3
  • 1c8b: 回顾与概述 这篇文章详细介绍了Tensorflow的安装和校验安装是否成功的教程,涵盖了在Ubuntu...
    darkie阅读 3,199评论 0 4
  • mean to add the formatted="false" attribute?.[ 46% 47325/...
    ProZoom阅读 2,694评论 0 3
  • 使用phpinfo()函数 查看PHP信息 Redis扩展 下载地址 点击DLLimage.png 根据php信息...
    Hsinlung阅读 327评论 0 1
  • 妈妈不知道什么时候买了一台酸奶机。一天早上,我刚睡醒,迷迷糊糊地起了床,揉了揉惺松的睡眼,发现妈妈端着一个...
    宇本人666阅读 225评论 3 2