字典树(trie)
在leetcode 上刷题遇到的一种数据结构,以前没听说过,怪我孤陋寡闻,经过了解发现应用还是很广的。觉得有必要记录下
<a href = "https://leetcode.com/problems/implement-trie-prefix-tree/"> leetcode 208</a>
<a href = "https://zh.wikipedia.org/wiki/Trie">Trie的维基百科介绍</a>
- 概念
- 根节点不包含字符串
- 从根节点到某一叶子节点,路径上组成的所有字符就是该节点对应的字符串
- 每个节点的公共前缀作为一个字符节点保存
- 应用
- 词频统计:比hash或者堆要节省空间,
- 前缀匹配:前缀匹配的算法复杂度是O(1), 要查找匹配前缀字符串的长度
实现
class TrieNode{
TrieNode[] childs = new TrieNode[26]; // a-z
int count; //frequence;
char prefix; //当前节点的字符前缀
public TrieNode(char prefix){
this.prefix = prefix;
count = 1; //root 的count 初始化为0,所以要
}
public TrieNode(){}
public void addCount(){
this.count++;
}
public void setPrefix(char prefix){
this.prefix = prefix;
}
}
public class Trie {
private TrieNode root;
public Trie() {
root = new TrieNode();
}
public void insert(String word) {
TrieNode searchNode = root;
for (int level = 0;level < word.length();level++){
char currentChar = word.charAt(level);
TrieNode node = searchNode.childs[currentChar-'a'];
if (searchNode.childs[currentChar-'a'] == null) //如果这个前缀的还是null,那么新建插入一个
searchNode.childs[currentChar-'a'] = new TrieNode(currentChar);
else
node.count++;
searchNode = searchNode.childs[currentChar-'a'];
}
}
public boolean search(String word) {
TrieNode searchNode = root;
for (int level = 0;level < word.length();level++){
char currentChar = word.charAt(level);
TrieNode node = searchNode.childs[currentChar-'a'];
if (node == null)
return false;
searchNode = node;
}
int childCount = 0;
for (TrieNode trieNode : searchNode.childs){
if (trieNode == null)
continue;
childCount += trieNode.count;
}
return searchNode.count > childCount;
}
public boolean startsWith(String prefix) {
TrieNode searchNode = root;
for (int level = 0;level < prefix.length();level++){
char currentChar = prefix.charAt(level);
TrieNode node = searchNode.childs[currentChar-'a'];
if (node == null)
return false;
searchNode = node;
}
return true;
}
}