Spark笔记

  • It was designed to solve what MR failed to address: perf issues due to no way to re-use data between computations.
    • Iterative jobs (popular in Machine Learning algorithms)
    • Interactive analytics (ad hoc exploratory queries)
  • Resilient distributed dataset (RDD): which represents a read-only collection of objects partitioned across a set of machines that can be rebuilt if a partition is lost. These can be cached and re-used in multiple parallel operations.
  • Fault tolerance achieved through lineage: if a partition of an RDD is lost, the RDD has enough information about how it was derived from other RDDs to be able to rebuild just that partition.
    • a handle to an RDD contains enough information to compute the RDD starting from data in reliable storage.

Constructing RDDs

  • From a file in HDFS
  • Parallelizing a Scala collection
  • Transforming an existing RDD
  • Change the persistence of an RDD
    • Cache: lazy, but leave in cache after computation. Hint only, won't force if no space.
    • Save: writes it to file system
  • Parallel Operations
  • Reduce: dataset elements using an associative function to produce a result at the driver program; reduce results are only collected at one process
  • Collect: sends all elements of the dataset to the driver program
  • Foreach: passes each element through a user provided function

Shared Variables

  • Broadcast variables: distribute a large piece of read-only data to distribute to all workers and not package with every closure.
  • Accumulators: workers can only add to it; only the driver can read it.

Implementation

  • What is Mesos?!
  • Spark is built on top of Mesos [16, 15], a “cluster operating system” that lets multiple parallel applications share a cluster in a fine-grained manner and provides an API for applications to launch tasks on a cluster

RDD Implementation

  • Internally, each RDD object implements the same simple interface, which consists of three operations:
    • getPartitions: returns a list of partition IDs.
    • getIterator(partition): iterates over a partition.
    • getPreferredLocations(partition): used for task scheduling to achieve data locality.
  • Delay scheduling: send each task to one if its preferred locations.
  • if a node fails, its partitions are re-read from their parent datasets and eventually cached on other nodes

Shared Variables Implementation

  • Broadcast variables and accumulators are implemented using classes with custom serialization formats
  • Broadcast variable is saved to filesystem, fetched and cached on worker node.
  • Accumulator is saved to filesystem. Each worker node updates own accumulator from zero and sends back for global update.

Interpreter Integration

  • Scala compiles a class for each line typed by user including a singleton that contains the variables and functions on the line.
  • Previous lines are referenced via Class.getInstance.
  • Sparked changed this to output compiled classes into a shared filesystem and reference the singleton objects directly.

Performance benchmarks

  • Logistic regression runs 10x faster than Map Reduce.
  • Interactive queries are much faster after first query, e.g. 35 s, → 0.5 s.

Related Work

  • Distributed Shared Memory
    • Fault tolerance: checkpointing, lineage. Lineage is better.
    • Lineage: only the lost partitions need to be recomputed, and that can be done in parallel on different nodes, without requiring the program to revert to a checkpoint. No overhead if no nodes fail.
  • Language Integation
    • Unlike DryadLINQ, Spark allows RDDs to persist in memory across parallel operations. [What does DryadLINQ do again?]
    • In addition, Spark enriches the language integration model by supporting shared variables (broadcast variables and accumulators), implemented using classes with custom serialized forms.

Future work — was this achieved?

  1. Formally characterize the properties of RDDs and Spark’s other abstractions, and their suitability for various classes of applications and workloads.
  2. **Enhance the RDD abstraction to allow programmers to trade between storage cost and re-construction cost. **
  3. Define new operations to transform RDDs, including a “shuffle” operation that repartitions an RDD by a given key. Such an operation would allow us to implement group-bys and joins.
  4. Provide higher-level interactive interfaces on top of the Spark interpreter, such as SQL and R [4] shells.
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,189评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,577评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,857评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,703评论 1 276
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,705评论 5 366
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,620评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,995评论 3 396
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,656评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,898评论 1 298
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,639评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,720评论 1 330
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,395评论 4 319
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,982评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,953评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,195评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 44,907评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,472评论 2 342

推荐阅读更多精彩内容

  • **2014真题Directions:Read the following text. Choose the be...
    又是夜半惊坐起阅读 9,363评论 0 23
  • 我们俩 也就是我和我弟弟 我弟弟呢 小名叫胖子 大名叫恩扬 对他我永远充满了愧疚之情 不要想太多 也不要...
    Admancy是我阅读 319评论 0 0