激光雷达SLAM算法

SLAM (Simultaneous Localization and Mapping), 即时定位与地图构建

机器人研究的问题包含许许多多的领域,我们常见的几个研究的问题包括:建图(Mapping)、定位(Localization)和路径规划(Path Planning),如果机器人带有机械臂,那么运动规划(Motion Planning)也是重要的一个环节,SLAM需要机器人在未知的环境中逐步建立起地图,然后根据地区确定自身位置,从而进一步定位。

ROS:

ROS系统通常由大量节点组成,其中任何一个节点均可以通过发布/订阅的方式与其他节点进行通信。举例来说,机器人上的一个位置传感器如雷达单元就可以作为ROS的一个节点,雷达单元可以以信息流的方式发布雷达获得的信息,发布的信息可以被其他节点如导航单元、路径规划单元获得。

ROS的通信机制:

  • 基于topic的订阅发布的方式
  • 类似rpc的方式, 以注册服务的方式通讯,在服务通信中,Camera Node可以在ROS Master上注册一个特定的服务(Service)。请求方(Image Processing Node)发送一个request,等待应答方(Camera Node)处理后,反馈回一个reply。


    image.png

ROS(机器人操作系统)中SLAM的一些功能包,也就是一些常用的SLAM算法,例如Gmapping、Karto、Hector、Cartographer等算法。我们不会去关注算法背后的数学原理,而是更注重工程实现上的方法,告诉你SLAM算法包是如何工作的,怎样快速的搭建起SLAM算法。

地图: ROS中的地图很好理解,就是一张普通的灰度图像,通常为pgm格式。这张图像上的黑色像素表示障碍物,白色像素表示可行区域,灰色是未探索的区域

image.png

地图在ROS中是以Topic的形式维护和呈现的,这个Topic名称就叫做 /map ,由于 /map 中实际上存储的是一张图片,为了减少不必要的开销,这个Topic往往采用锁存(latched)的方式来发布。地图如果没有更新,就维持着上次发布的内容不变,此时如果有新的订阅者订阅消息,这时只会收到一个 /map 的消息,也就是上次发布的消息;只有地图更新了(比如SLAM又建出来新的地图),这时 /map 才会发布新的内容。 这种方式非常适合变动较慢、相对固定的数据(例如地图),然后只发布一次,相比于同样的消息不定的发布,锁存的方式既可以减少通信中对带宽的占用,也可以减少消息资源维护的开销。

Gmapping,Gmapping算法是目前基于激光雷达和里程计方案里面比较可靠和成熟的一个算法,它基于粒子滤波,采用RBPF的方法效果稳定,许多基于ROS的机器人都跑的是gmapping_slam。

gmapping的作用是根据激光雷达和里程计(Odometry)的信息,对环境地图进行构建,并且对自身状态进行估计。因此它得输入应当包括激光雷达和里程计的数据,而输出应当有自身位置和地图。

多传感器融合实现点云地图构建:

论文支撑:R-LINS: A Robocentric Lidar-Inertial State Estimator for Robust and Efficient Navigation

传感器:

6轴 IMU:高频,聚焦自身运动,不采集外界环境数据
3D LiDAR:低频,聚焦车体运动,采集外界环境数据

R-LINS使用以上两种传感器来估计机器人的运动姿态, 对于任一传感器而言,单独的依靠自己的数据是很难实现地图构建的, 比如纯雷达模型使用的传感器是激光雷达,可以很好的探测到外界的环境信息。但是,同样的,也会受到这些信息的干扰,再长时间的运算中会产生一定的累计误差。为了防止这种误差干扰到后续的地图构建中,需要使用另一种传感器来矫正机器人自身的位姿信息, 即IMU传感器,IMU传感器由于是自身运动估计的传感器,所以,采集的都是自身运动的姿态信息。可以很好的矫正激光雷达里程计的位姿信息。所以,通常使用激光雷达和惯导来进行数据融合,实现姿态信息的矫正。

融合方式:

image.png

一共分为三大块:

  • 特征提取:从原始点云中提取稳定的特征
  • LIO:状态传递和状态更新模块组成,使用迭代ESKF,输出纯里程数据和不失真的点云特征
  • 地图构建:细化纯里程数据,得到全局位姿信息并输出全局地图
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 205,033评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,725评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,473评论 0 338
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,846评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,848评论 5 368
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,691评论 1 282
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,053评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,700评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 42,856评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,676评论 2 323
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,787评论 1 333
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,430评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,034评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,990评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,218评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,174评论 2 352
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,526评论 2 343

推荐阅读更多精彩内容