R语言中的渐变色

如何使用R语言画出漂亮的图,颜色很重要,既要协调,又有有一定的分辨力。


1. 彩虹色

可以拿到任意多个颜色,当然颜色越多,分辨力越低。

barplot(rep(1,8), col=rainbow(8),border=NA)

rainbow(8)

[1] "#FF0000FF" "#FFBF00FF" "#80FF00FF" "#00FF40FF" "#00FFFFFF" "#0040FFFF"

[7] "#8000FFFF" "#FF00BFFF"


barplot(rep(1,20), col=rainbow(20),border=NA) #分辨力降低

2. 其他预置渐变色

par(mfrow=c(4,1), mar=c(0,2,2,0) )

n=10

#heat.colors()从红色渐变到黄色,再变到白色

barplot(rep(1,n), col= heat.colors(n), border=NA, main="heat.colors") 

#terrain.colors() 从绿色渐变到黄色,再到棕色,最后到白色 

barplot(rep(1,n),col=terrain.colors(n), border=NA, main="terrain.colors")

#topo.colors() 从蓝色渐变到青色,再到黄色,最后到棕色 

barplot(rep(1,n),col=topo.colors(n), border=NA, main="topo.colors")

#cm.colors() 从青色渐变到白色,再到粉红色

barplot(rep(1,n),col=cm.colors(n), border=NA, main="cm.colors")


3.使用预制配色集合 Set2/Dark2,插值生成任意个颜色

(1)

library(RColorBrewer)

display.brewer.all() #显示全部颜色集合


# 挑选某一个集合

#barplot(rep(1,8),col=brewer.pal(8,"Dark2")[1:8]) #基础语法

myColors=brewer.pal(8,"Dark2")[1:8] #Dark2主题有8种颜色

par(mfrow=c(4,1), mar=c(0,2,2,0) )

barplot(rep(1,8),col= myColors, main="Dark2"  )

#

n=15 #nrow(df);

barplot(rep(1, n ),col= colorRampPalette(colors = myColors)( n ),main="Default:linear") #则由8种生成15种颜色

barplot(rep(1, n ),col= colorRampPalette(colors = myColors, interpolate ="linear")( n ),main="linear" ) #插值方式

barplot(rep(1, n ),col= colorRampPalette(colors = myColors, interpolate ="spline")( n ),main="spline") #插值方式


colSet2 # 获取颜色16进制表示

# [1] "#1B9E77" "#D95F02" "#7570B3" "#E7298A" "#66A61E" "#E6AB02" "#A6761D" "#666666"


解释:

n=5;barplot(rep(1,n), col=colorRampPalette(colors = c('red', 'white'))( n ))

colorRampPalette 函数可以混合任意两种及更多颜色,通过插值,生成更多色彩。


(2) 目测其他几个预制颜色集合

n=8;barplot(rep(1,n),col= brewer.pal(n,"Set2")[1:n] ) # set2 共8种颜色


ref:

biomooc.com

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,732评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,496评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,264评论 0 338
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,807评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,806评论 5 368
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,675评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,029评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,683评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 41,704评论 1 299
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,666评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,773评论 1 332
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,413评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,016评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,978评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,204评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,083评论 2 350
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,503评论 2 343