超有诚意的R语言数据读取指南

2020-2-23 更新:
import 输入其他格式的数据报错的问题,可用参数format 解决,例如format = "\t"。帮助文档中该参数解释为:

An optional character string code of file format, which can be used to override the format inferred from file. Shortcuts include: “,” (for comma-separated values), “;” (for semicolon-separated values), and “|” (for pipe-separated values).
此外,发现import可以使用fread的参数,例如skip="ID",表示从ID所在行开始读取。
所以,还是吹爆import吧~
read.delim替代read.table比较好用,只有一点点默认参数的差别。

花花写于2019.8.9
为了丰富全国巡讲的课件“文件读写”部分(讲义也写了3/4了),我从《高效R语言编程》中学了几个新的读取和导出文件的函数,特此记录。
原书英文电子版免费:https://csgillespie.github.io/efficientR/input-output.html#prerequisites-4
昨天推文忘记改题目,也是服了自己。

1.准备工作

需要用到几个包

if(!require("rio")) install.packages("rio")
if(!require("readr")) install.packages("readr")
if(!require("data.table")) install.packages("data.table")
if(!require("WDI")) install.packages("WDI")
library(rio)
library(readr)
library(data.table)
library(WDI)

然后是全部的示例数据,在生信星球公众号后台回复“读取”即可获得。

2. 高效读写 - rio包

rio 包是一个名副其实的多功能数据读写包,支持多种格式:.csv, .feather, .json, .dta, .xls, .xlsx

使用方法之简单,令人发指,不需要什么附加的参数,只要是支持的格式,一律一行代码读进来,想导出什么格式,直接给文件名加后缀就行了。

co2 = import("CO2.csv")
head(co2)
#>   V1     time  value
#> 1  1 1959.000 315.42
#> 2  2 1959.083 316.31
#> 3  3 1959.167 316.50
#> 4  4 1959.250 317.56
#> 5  5 1959.333 318.13
#> 6  6 1959.417 318.00
export(co2,"CO2.txt")

voyages = import("voc_voyages.tsv")
head(voyages)
#>   number number_sup trip trip_sup  boatname                     master
#> 1      1               1          AMSTERDAM   Jan Jakobsz. Schellinger
#> 2      2               1             DUIFJE     Simon Lambrechtsz. Mau
#> 3      3               1          HOLLANDIA Jan Dignumsz. van Kwadijk+
#> 4      4               1          MAURITIUS        Jan Jansz. Molenaar
#> 5      5               1          LANGEBARK Hans Huibrechtsz. Tonneman
#> 6      6               1               MAAN                           
#>   tonnage type_of_boat built bought hired yard chamber departure_date
#> 1     260               1594                 A             1595-04-02
#> 2      50        pinas  1594                 A             1595-04-02
#> 3     460               1594                 A             1595-04-02
#> 4     460               1594                 A             1595-04-02
#> 5     300                                                  1598-03-25
#> 6      NA                                                  1598-03-25
#>   departure_harbour cape_arrival cape_departure cape_call arrival_date
#> 1             Texel                                  TRUE   1596-06-06
#> 2             Texel                                  TRUE   1596-06-06
#> 3             Texel                                  TRUE   1596-06-06
#> 4             Texel                                  TRUE   1596-06-06
#> 5           Zeeland                                  TRUE   1599-03-01
#> 6           Zeeland                                  TRUE             
#>   arrival_harbour next_voyage
#> 1          Engano          NA
#> 2          Engano        5001
#> 3          Engano        5002
#> 4          Engano        5003
#> 5          Bantam        5010
#> 6                          NA
#>                                                                                                                                                                                                                                                                                                                          particulars
#> 1 from 04-08 till 11-08 in the Mosselbaai; from 13-09 till 07-10 in the Ampalazabaai; from 09-10 till 13-12 in S. Augustins Bay, where before departure 127 of the 249 men were still alive; 11-01 till 21-01 at Ste. Marie I.; from 23-01 till 12-02 in the Bay of Antongil. The AMSTERDAM was set on fire near Bawean, 11-01-1597.
#> 2                                                                                                                                                                                                                                                                        HOLLANDIA on 26-10-1595; he was succeeded by Hendrik Jansz.
#> 3                                                                                                                                                                                                                                                                        Jan Dignumsz. died on 29-05-1595 and Mau was his successor.
#> 4                                                                                                                                                                                                                                                                Jan Jansz. died on 25-12-1596 and Hendrik Jansz. was his successor.
#> 5                                                                                                                                                                                                                                                                                                                             other.
#> 6
export(voyages, "voc_voyages.xlsx")
#> Note: zip::zip() is deprecated, please use zip::zipr() instead
#读取在线文件也木有问题
capitals = import("https://github.com/mledoze/countries/raw/master/countries.json")

3.其他方法

我刚看到import的时候是震惊的,如果它什么数据都能读,那还学什么read.table,read.csv呀,那不是画蛇添足么。。。实际上并不。

接着往下看,除了import意外的另外几种方法:

(1)read.table及其同类的read.csvread.delim

(2)readr包的read_tableread_csv

(3)data.table包的fread函数

df_co2 = read.csv("CO2.csv")
df_co2_dt = readr::read_csv("CO2.csv")
#> Warning: Missing column names filled in: 'X1' [1]
#> Parsed with column specification:
#> cols(
#>   X1 = col_double(),
#>   time = col_double(),
#>   value = col_double()
#> )
df_co2_readr = data.table::fread("CO2.csv")
voyages_base = read.delim("voc_voyages.tsv")
voyages_readr = readr::read_tsv("voc_voyages.tsv")
#> Parsed with column specification:
#> cols(
#>   .default = col_character(),
#>   number = col_double(),
#>   number_sup = col_logical(),
#>   trip = col_double(),
#>   tonnage = col_double(),
#>   hired = col_logical(),
#>   departure_date = col_date(format = ""),
#>   cape_arrival = col_date(format = ""),
#>   cape_departure = col_date(format = ""),
#>   cape_call = col_logical(),
#>   arrival_date = col_date(format = ""),
#>   next_voyage = col_double()
#> )
#> See spec(...) for full column specifications.
#> Warning: 77 parsing failures.
#>  row   col           expected actual              file
#> 1023 hired 1/0/T/F/TRUE/FALSE 1664   'voc_voyages.tsv'
#> 1025 hired 1/0/T/F/TRUE/FALSE 1664   'voc_voyages.tsv'
#> 1030 hired 1/0/T/F/TRUE/FALSE 1664   'voc_voyages.tsv'
#> 1034 hired 1/0/T/F/TRUE/FALSE 1664/5 'voc_voyages.tsv'
#> 1035 hired 1/0/T/F/TRUE/FALSE 1665   'voc_voyages.tsv'
#> .... ..... .................. ...... .................
#> See problems(...) for more details.
voyages_dt = data.table::fread("voc_voyages.tsv")

4.差异在哪

书中提到fread和read_*对有异常值的数值型变量进行的不同处理

For columns in which the first 1000 rows are of one type but which contain anomalies, such as ‘built’ and ‘departure_data’ in the shipping example, fread() coerces the result to characters. read_csv() and siblings, by contrast, keep the class that is correct for the first 1000 rows and sets the anomalous records to NA. This is illustrated in 5.1, where read_tsv() produces a numeric class for the ‘built’ variable, ignoring the non-numeric text in row 2841.

奇怪的是我跑代码发现书上所说的built一列并无区别,都是character。

class(voyages_dt$built)
#> [1] "character"
class(voyages_readr$built)
#> [1] "character"

这个并不重要,但我有个意外发现,我很好奇差异在哪,就做了一些尝试:

首先是维度

dim(voyages)
#> [1] 8131   22
dim(voyages_base)
#> [1] 8131   22
dim(voyages_dt)
#> [1] 8131   22
dim(voyages_readr)
#> [1] 8131   22

行列数是一致的。

然后是列名

#返回结果一致
colnames(voyages)
colnames(voyages_base)
colnames(voyages_dt)
colnames(voyages_readr)
#>  [1] "number"            "number_sup"        "trip"             
#>  [4] "trip_sup"          "boatname"          "master"           
#>  [7] "tonnage"           "type_of_boat"      "built"            
#> [10] "bought"            "hired"             "yard"             
#> [13] "chamber"           "departure_date"    "departure_harbour"
#> [16] "cape_arrival"      "cape_departure"    "cape_call"        
#> [19] "arrival_date"      "arrival_harbour"   "next_voyage"      
#> [22] "particulars"

可以用identical来查看两两是否一致。。。。

第三是每列的数据类型

这个有难度,虽然str()函数是可以看的,但是对于这个例子来说,并不方便比较。我写了一个函数


dfc =function(kk,name=F){
  kk=data.frame(kk)
  x=vector()
  n=0
  for(i in colnames(kk)){
    n=n+1
    x[[n]]=class(kk[,i])
  }
  if(name)names(x)=colnames(kk)
  x
}

#拼在一起做个对比
cn = cbind(colnames(voyages_dt),
           dfc(voyages),
           dfc(voyages_dt),
           dfc(voyages_readr),
           dfc(voyages_base));cn
#>       [,1]                [,2]        [,3]        [,4]        [,5]       
#>  [1,] "number"            "integer"   "integer"   "numeric"   "integer"  
#>  [2,] "number_sup"        "character" "character" "logical"   "character"
#>  [3,] "trip"              "integer"   "integer"   "numeric"   "integer"  
#>  [4,] "trip_sup"          "character" "character" "character" "character"
#>  [5,] "boatname"          "character" "character" "character" "character"
#>  [6,] "master"            "character" "character" "character" "character"
#>  [7,] "tonnage"           "integer"   "integer"   "numeric"   "integer"  
#>  [8,] "type_of_boat"      "character" "character" "character" "character"
#>  [9,] "built"             "character" "character" "character" "character"
#> [10,] "bought"            "character" "character" "character" "character"
#> [11,] "hired"             "character" "character" "logical"   "character"
#> [12,] "yard"              "character" "character" "character" "character"
#> [13,] "chamber"           "character" "character" "character" "character"
#> [14,] "departure_date"    "character" "character" "Date"      "character"
#> [15,] "departure_harbour" "character" "character" "character" "character"
#> [16,] "cape_arrival"      "character" "character" "Date"      "character"
#> [17,] "cape_departure"    "character" "character" "Date"      "character"
#> [18,] "cape_call"         "logical"   "logical"   "logical"   "character"
#> [19,] "arrival_date"      "character" "character" "Date"      "character"
#> [20,] "arrival_harbour"   "character" "character" "character" "character"
#> [21,] "next_voyage"       "integer"   "integer"   "numeric"   "integer"  
#> [22,] "particulars"       "character" "character" "character" "character"

第18列有差异!另外有几列智能地被readr识别为“Date”。

head(voyages[,18])
#> [1] TRUE TRUE TRUE TRUE TRUE TRUE
head(voyages_dt[,18])
#>    cape_call
#> 1:      TRUE
#> 2:      TRUE
#> 3:      TRUE
#> 4:      TRUE
#> 5:      TRUE
#> 6:      TRUE
head(voyages_base[,18])
#> [1] "true" "true" "true" "true" "true" "true"
head(voyages_readr[,18])
#> # A tibble: 6 x 1
#>   cape_call
#>   <lgl>    
#> 1 TRUE     
#> 2 TRUE     
#> 3 TRUE     
#> 4 TRUE     
#> 5 TRUE     
#> 6 TRUE

关于读取文件所需时间的差异,书中给了一张图:

5.生信数据实例

书中给的例子都是规则的数据框,所以都没有报错或读取错误的情况。我从果子师兄那里拿了几个示例数据,来看实际应用中是否都能读取成功。

(1)简单txt和csv

## .csv
#file.show("B cell receptor signaling pathway.csv")
csv1 = read.csv(file = "B cell receptor signaling pathway.csv");dim(csv1)
#> [1]  18 169
csv2 = data.table::fread(file = "B cell receptor signaling pathway.csv");dim(csv2)
#> [1]  18 169
csv3 = import("B cell receptor signaling pathway.csv");dim(csv3)
#> [1]  18 169
csv4 <- read_csv("B cell receptor signaling pathway.csv");dim(csv4)
#> Warning: Missing column names filled in: 'X1' [1]
#> Parsed with column specification:
#> cols(
#>   .default = col_double(),
#>   X1 = col_character()
#> )
#> See spec(...) for full column specifications.
#> [1]  18 169

## .txt
txt1 <- read.table("platformMap.txt",header = T,sep = "\t");dim(txt1)
#> [1] 74  6
txt2 <- data.table::fread("platformMap.txt");dim(txt2)
#> [1] 74  6
txt3 <- import("platformMap.txt");dim(txt3)
#> [1] 74  6
txt4 <- read_tsv("platformMap.txt");dim(txt4)
#> Parsed with column specification:
#> cols(
#>   title = col_character(),
#>   gpl = col_character(),
#>   bioc_package = col_character(),
#>   manufacturer = col_character(),
#>   organism = col_character(),
#>   data_row_count = col_double()
#> )
#> [1] 74  6

csv 都没有问题,txt则是3个直接读取成功,一个需要少量加参数。

(2)GPL注释表格

特点是前12行为井号开头的注释行:如图

geo1 <- read.table("GPL6244-17930.txt",header = T,sep="\t",fill = T);dim(geo1)
#> [1] 33297    12
geo2 <- data.table::fread("GPL6244-17930.txt");dim(geo2)
#> [1] 33297    12
geo3 <- import("GPL6244-17930.txt");dim(geo3)
#> [1] 33297    12
geo4 <- read_tsv("GPL6244-17930.txt",skip = 12)
#> Parsed with column specification:
#> cols(
#>   ID = col_double(),
#>   GB_LIST = col_character(),
#>   SPOT_ID = col_character(),
#>   seqname = col_character(),
#>   RANGE_GB = col_character(),
#>   RANGE_STRAND = col_character(),
#>   RANGE_START = col_double(),
#>   RANGE_STOP = col_double(),
#>   total_probes = col_double(),
#>   gene_assignment = col_character(),
#>   mrna_assignment = col_character(),
#>   category = col_character()
#> )
#> Warning: 8936 parsing failures.
#>  row         col expected actual                file
#> 3169 RANGE_START a double    --- 'GPL6244-17930.txt'
#> 3169 RANGE_STOP  a double    --- 'GPL6244-17930.txt'
#> 3752 RANGE_START a double    --- 'GPL6244-17930.txt'
#> 3752 RANGE_STOP  a double    --- 'GPL6244-17930.txt'
#> 9529 RANGE_START a double    --- 'GPL6244-17930.txt'
#> .... ........... ........ ...... ...................
#> See problems(...) for more details.

两个智能派还是可以读取正确,而另外两个则需要加参数才能读取正确:read.table需要fill=T,表示缺值的地方填充空字符串;read_table2则需要指定跳过前12行(也就是井号开头的注释行)。

(3)GEO表达矩阵

## 3.读取GEO数据(带有注释行的txt)

exp1 <- read.table("GSE42872_series_matrix.txt",comment.char="!",header=T);dim(exp1)
#> [1] 33297     7
exp2 <- data.table::fread("GSE42872_series_matrix.txt",skip = 59);dim(exp2)
#> Warning in data.table::fread("GSE42872_series_matrix.txt", skip = 59):
#> Discarded single-line footer: <<!series_matrix_table_end>>
#> [1] 33297     7
exp3 <- import("GSE42872_series_matrix.txt") ;dim(exp3)
#> Warning in fread(dec = ".", input = structure("GSE42872_series_matrix.txt",
#> class = c("rio_tsv", : Stopped early on line 26. Expected 2 fields but
#> found 0. Consider fill=TRUE and comment.char=. First discarded non-empty
#> line: <<!Sample_title "A375 cells 24h Control rep1" "A375 cells 24h Control
#> rep2" "A375 cells 24h Control rep3" "A375 cells 24h Vemurafenib rep1" "A375
#> cells 24h Vemurafenib rep2" "A375 cells 24h Vemurafenib rep3">>
#> [1] 24  2
exp4 <- read_tsv("GSE42872_series_matrix.txt",skip = 59);dim(exp4)
#> Parsed with column specification:
#> cols(
#>   ID_REF = col_double(),
#>   GSM1052615 = col_double(),
#>   GSM1052616 = col_double(),
#>   GSM1052617 = col_double(),
#>   GSM1052618 = col_double(),
#>   GSM1052619 = col_double(),
#>   GSM1052620 = col_double()
#> )
#> Warning: 2 parsing failures.
#>   row    col  expected                   actual                         file
#> 33298 ID_REF a double  !series_matrix_table_end 'GSE42872_series_matrix.txt'
#> 33298 NA     7 columns 1 columns                'GSE42872_series_matrix.txt'
#> [1] 33298     7

此时需要加的参数更多咯,import无参数可加,虽然没报错,但是读取的并不对。

(4)读取TCGA甲基化文件

tcga1 <- read.table("jhu-usc.edu_BRCA.HumanMethylation450.9.lvl-3.TCGA-BH-A1EV-11A-24D-A138-05.gdc_hg38.txt",header=T,fill = T,sep = "\t")
tcga2 <- data.table::fread("jhu-usc.edu_BRCA.HumanMethylation450.9.lvl-3.TCGA-BH-A1EV-11A-24D-A138-05.gdc_hg38.txt")
tcga3 <- import("jhu-usc.edu_BRCA.HumanMethylation450.9.lvl-3.TCGA-BH-A1EV-11A-24D-A138-05.gdc_hg38.txt")
tcga4 <- read_tsv("jhu-usc.edu_BRCA.HumanMethylation450.9.lvl-3.TCGA-BH-A1EV-11A-24D-A138-05.gdc_hg38.txt")
#> Parsed with column specification:
#> cols(
#>   `Composite Element REF` = col_character(),
#>   Beta_value = col_double(),
#>   Chromosome = col_character(),
#>   Start = col_double(),
#>   End = col_double(),
#>   Gene_Symbol = col_character(),
#>   Gene_Type = col_character(),
#>   Transcript_ID = col_character(),
#>   Position_to_TSS = col_character(),
#>   CGI_Coordinate = col_character(),
#>   Feature_Type = col_character()
#> )

除了read.table 需要加fill=T,其余都没什么问题。

(5)读取TCGA数据RNAseq data counts 文件

rna1 <- read.table("0e30bd18-8e8b-4c52-aace-b5587c6df51a.htseq.counts",header = F,sep = "\t")

rna2 <- data.table::fread("0e30bd18-8e8b-4c52-aace-b5587c6df51a.htseq.counts")
rna3 <- import("0e30bd18-8e8b-4c52-aace-b5587c6df51a.htseq.counts")#错误
#> Unrecognized file format. Try specifying with the format argument.
#> Error in .import.default(file = file, ...): Format not supported
rna4 <- read_tsv("0e30bd18-8e8b-4c52-aace-b5587c6df51a.htseq.counts",col_names =F)
#> Parsed with column specification:
#> cols(
#>   X1 = col_character(),
#>   X2 = col_double()
#> )

import只支持它认识的几种后缀!其他均报错格式不支持。

(6)终极大招:GEO的soft文件

这个文件很复杂,注释符号不统一,单独的platform表格应该是33297行,但后面又跟了十几万行的其他内容。

第一个特殊之处:

第二个特殊之处:


## 读取GEO平台注释信息soft文件
soft1 <-data.table::fread("GSE42872_family.soft",skip ="ID")
#> Warning in data.table::fread("GSE42872_family.soft", skip = "ID"): Stopped
#> early on line 33404. Expected 12 fields but found 1. Consider fill=TRUE and
#> comment.char=. First discarded non-empty line: <<!platform_table_end>>
soft2 <-import("GSE42872_family.soft") #直接报错
#> Unrecognized file format. Try specifying with the format argument.
#> Error in .import.default(file = file, ...): Format not supported
soft3 <-read.table("GSE42872_family.soft",skip = 105,sep = "\t",header = T,fill = T) 
soft4 <- read_tsv("GSE42872_family.soft",skip = 105)
#> Parsed with column specification:
#> cols(
#>   ID = col_double(),
#>   GB_LIST = col_character(),
#>   SPOT_ID = col_character(),
#>   seqname = col_character(),
#>   RANGE_GB = col_character(),
#>   RANGE_STRAND = col_character(),
#>   RANGE_START = col_double(),
#>   RANGE_STOP = col_double(),
#>   total_probes = col_double(),
#>   gene_assignment = col_character(),
#>   mrna_assignment = col_character(),
#>   category = col_character()
#> )
#> Warning: 209188 parsing failures.
#>  row         col expected actual                   file
#> 3169 RANGE_START a double    --- 'GSE42872_family.soft'
#> 3169 RANGE_STOP  a double    --- 'GSE42872_family.soft'
#> 3752 RANGE_START a double    --- 'GSE42872_family.soft'
#> 3752 RANGE_STOP  a double    --- 'GSE42872_family.soft'
#> 9529 RANGE_START a double    --- 'GSE42872_family.soft'
#> .... ........... ........ ...... ......................
#> See problems(...) for more details.

fread的参数skip="ID"表示的是从以“ID”开头的那一行开始读取。

帮助文档里说到:

If 0 (default) start on the first line and from there finds the first row with a consistent number of columns. This automatically avoids irregular header information before the column names row. **skip>0 means ignore the first skip rows manually. skip="string" searches for "string" in the file (e.g. a substring of the column names row) and starts on that line **(inspired by read.xls in package gdata).

fread很智能的取了前半部分几万行,而read.table和read.tsv则是全部读取了,在这个问题上可以看出,fread无往不利。

总结一下

果子师兄说:read.table是最常用的,fread则是最智能的。
果子师兄还说:fread加一个参数data.table = F,可以让数据读进来就是data.frame。

有了今天的学习成果,我认为他说的很对。对于常见格式,可以先尝试import导入(其实import是根据fread函数写的);

如果失败,再用fread读取,最多是加个参数,理论上就可以成功;

如果还是不行,哈德雷大神写的read_*系列也不是吃素的,拿来试试。

base包有点笨,但他参数多,更灵活,可以作为一个选择。毕竟我学R数据科学的时候,哪知道什么base包。。。

别走!还有个大招

readLines()这个函数也很棒,他是将每行作为一个字符串,读取的结果是一个大的字符串向量。

别管三七二十一,先读进来,转化为一个"一列的数据框",然后再分割也是可以的。

关于分割,推荐tidyr::separate()

举个栗子:

if(!require(tidyr)) install.packages("tidyr")
if(require(stringr))install.packages("stringr")
#> Error in install.packages : Updating loaded packages
library(tidyr)
library(stringr)
x = readLines("B cell receptor signaling pathway.csv")
n=str_count(x[1],",")
dfx=data.frame(x=x) %>%
  separate(x,into = paste0("V",1: (n+1)),sep = ",");dim(dfx)
#> [1]  19 169

微信公众号生信星球同步更新我的文章,欢迎大家扫码关注!


我们有为生信初学者准备的学习小组,点击查看◀️
想要参加我的线上线下课程,也可加好友咨询🔼
如果需要提问,请先看生信星球答疑公告

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,884评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,755评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,369评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,799评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,910评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,096评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,159评论 3 411
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,917评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,360评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,673评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,814评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,509评论 4 334
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,156评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,882评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,123评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,641评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,728评论 2 351

推荐阅读更多精彩内容