前言
之前写项目的时候,对于数据库的操作不是特别多,能避免就尽量避免,并且一直想不到比较好的方法去组织网络数据、本地数据的逻辑。所以在最近的面试中时,问及项目中的数据库实现,以及比较好用的数据库的框架及其实现原理时,我就只答道之前在《第一行代码》中看到了的LitePal,但源码就...所以这次来恶补一次数据库。几经搜索,云比较,比较青睐官方Jetpack组件中的Room。
Room简介
Room框架是使用生成代码的方式在编译时生成CRUD的代码,因此性能是远远好过通过反射实现的ORM框架。但是事实上,Room最吸引我的地方不止是性能,Room对架构组件(LiveData)、RxJava等流行框架做了适配。例如,Room中的查询操作可以返回一个LiveData<XXX>,并且,每一次RUD操作,都会更新LiveData。这可以大大简化本地、内存、网络多级缓存的实现,具体官方也给出了一系列Demo,并且随时都在随着框架或者根据PR更新,强烈推荐研究这些Demo!
注
本文主要是对Room中与LiveData的联动作出分析,阅读本文前建议先熟悉Room的基本使用,建议看一下与LiveData配合使用的Demo。
正文
创建相关类
AppDatabase.kt
@Database(entities = [Book::class], version = 1)
abstract class AppDatabase : RoomDatabase() {
abstract fun bookDao(): BookDao
}
Book.kt
@Dao
interface BookDao {
@Insert
fun insert(book: Book): Long
@Delete
fun delete(book: Book)
@Query("select * from book where id = :id")
fun queryById(id: Long): LiveData<Book>
}
使用数据库:
val db = Room.databaseBuilder(applicationContext, AppDatabase::class.java, "test.db")
.build()
db.bookDao().queryById(1).observe(this, Observer {
// do something when book update
})
这样在Observer里面就可以接收到任何时候数据库id=1的数据修改操作了。
生成代码并分析
Build -> Make Project 编译,会生成Room相关代码,如果是kapt的话,生成代码目录应该是{项目目录}/app/build/generated/source/kapt/debug/{包路径}/下。
我们可以看到生成了AppDatabase_Impl和BookDao_Impl两个代码文件,分别对应前面贴出来的AppDatabase的实现类和BookDao的实现类。
AppDatabase_Impl则是表的创建、删除相关代码,Dao则是具体表的CRUD操作。这里我们重点关系生成的查询方法。
BookDao_Impl#
@Override
public LiveData<Book> queryById(final long id) {
final String _sql = "select * from book where id = ?";
final RoomSQLiteQuery _statement = RoomSQLiteQuery.acquire(_sql, 1);
int _argIndex = 1;
_statement.bindLong(_argIndex, id);
return __db.getInvalidationTracker().createLiveData(new String[]{"book"}, new Callable<Book>() {
@Override
public Book call() throws Exception {
final Cursor _cursor = DBUtil.query(__db, _statement, false);
try {
final int _cursorIndexOfId = CursorUtil.getColumnIndexOrThrow(_cursor, "id");
final int _cursorIndexOfName = CursorUtil.getColumnIndexOrThrow(_cursor, "name");
final int _cursorIndexOfAuthor = CursorUtil.getColumnIndexOrThrow(_cursor, "author");
final int _cursorIndexOfPrice = CursorUtil.getColumnIndexOrThrow(_cursor, "price");
final Book _result;
if (_cursor.moveToFirst()) {
final long _tmpId;
_tmpId = _cursor.getLong(_cursorIndexOfId);
final String _tmpName;
_tmpName = _cursor.getString(_cursorIndexOfName);
final String _tmpAuthor;
_tmpAuthor = _cursor.getString(_cursorIndexOfAuthor);
final float _tmpPrice;
_tmpPrice = _cursor.getFloat(_cursorIndexOfPrice);
_result = new Book(_tmpId, _tmpName, _tmpAuthor, _tmpPrice);
} else {
_result = null;
}
return _result;
} finally {
_cursor.close();
}
}
@Override
protected void finalize() {
_statement.release();
}
});
}
注意这一行
return __db.getInvalidationTracker().createLiveData(...);
我们跟进去,最终创建的是一个RoomTrackingLiveData,是一个继承了LiveData的类。下面是它的构造方法。从构造方法来看,比较可疑的对象的是InvalidationTracker.Observer这个类,并且实现十有八九是观察者模式。而最后的回调也多半是onInvalidated方法。
@SuppressLint("RestrictedApi")
RoomTrackingLiveData(
RoomDatabase database,
InvalidationLiveDataContainer container,
Callable<T> computeFunction,
String[] tableNames) {
mDatabase = database;
mComputeFunction = computeFunction;
mContainer = container;
mObserver = new InvalidationTracker.Observer(tableNames) {
@Override
public void onInvalidated(@NonNull Set<String> tables) {
ArchTaskExecutor.getInstance().executeOnMainThread(mInvalidationRunnable);
}
};
}
而在RoomTrackingLiveData中,重写了onActive方法。其中mContainer是InvalidationLiveDataContainer,文档上有写仅仅是维护LiveData的强引用,防止正在使用的LiveData被回收,跟本文目标没关系,可忽略。而后面的就有意思了,通过Excutor执行了一个任务,所以,我们来看一下这个任务把。
@Override
protected void onActive() {
super.onActive();
mContainer.onActive(this);
mDatabase.getQueryExecutor().execute(mRefreshRunnable);
}
mRefreshRunnable#run()
// mRegisteredObserver是否注册的标志
if (mRegisteredObserver.compareAndSet(false, true)) {
mDatabase.getInvalidationTracker().addWeakObserver(mObserver);
}
boolean computed;
do {
computed = false;
if (mComputing.compareAndSet(false, true)) {
try {
T value = null;
while (mInvalid.compareAndSet(true, false)) {
computed = true;
try {
// Dao实现类中返回LiveData时传入的一个参数,用于查询,并将数据组装成一个实体类
value = mComputeFunction.call();
} catch (Exception e) {
throw new RuntimeException("Exception while computing database"
+ " live data.", e);
}
}
if (computed) {
postValue(value);
}
} finally {
mComputing.set(false);
}
}
} while (computed && mInvalid.get());
这段代码后段通过CAS去完成一次数据库的查询,组装成实体类并postValue,即更新LiveData。
注意到这个代码前段调用了InvalidationTracker的addWeakObserver,这个方法就应该就是订阅了。
InvalidationTracker#addWeakObserver
public void addWeakObserver(Observer observer) {
addObserver(new WeakObserver(this, observer));
}
InvalidationTracker#addObserver
public void addObserver(@NonNull Observer observer) {
final String[] tableNames = resolveViews(observer.mTables);
int[] tableIds = new int[tableNames.length];
final int size = tableNames.length;
for (int i = 0; i < size; i++) {
Integer tableId = mTableIdLookup.get(tableNames[i].toLowerCase(Locale.US));
if (tableId == null) {
throw new IllegalArgumentException("There is no table with name " + tableNames[i]);
}
tableIds[i] = tableId;
}
ObserverWrapper wrapper = new ObserverWrapper(observer, tableIds, tableNames);
ObserverWrapper currentObserver;
synchronized (mObserverMap) {
currentObserver = mObserverMap.putIfAbsent(observer, wrapper);
}
if (currentObserver == null && mObservedTableTracker.onAdded(tableIds)) {
syncTriggers();
}
}
InvalidationTracker$WeakObserver
static class WeakObserver extends Observer {
final InvalidationTracker mTracker;
final WeakReference<Observer> mDelegateRef;
WeakObserver(InvalidationTracker tracker, Observer delegate) {
super(delegate.mTables);
mTracker = tracker;
mDelegateRef = new WeakReference<>(delegate);
}
@Override
public void onInvalidated(@NonNull Set<String> tables) {
final Observer observer = mDelegateRef.get();
if (observer == null) {
mTracker.removeObserver(this);
} else {
observer.onInvalidated(tables);
}
}
}
可以看到,WeakObserver就是对Observer一个弱引用的包装。而在addObserver中,根据observer中tableNames,对更新了InvalidationTracker的订阅记录。添加成功后,最后会调用onAdded。
boolean onAdded(int... tableIds) {
boolean needTriggerSync = false;
synchronized (this) {
for (int tableId : tableIds) {
final long prevObserverCount = mTableObservers[tableId];
mTableObservers[tableId] = prevObserverCount + 1;
if (prevObserverCount == 0) {
mNeedsSync = true;
needTriggerSync = true;
}
}
}
return needTriggerSync;
}
这里mTableObservers是对每个table的observer进行计数。为什么要计数呢?我们接着看。在发现了订阅数从0->1的table时,这个方法会返回true,如果它返回true,会执行syncTriggers()方法,经过调用会执行这一段代码:
final int[] tablesToSync = mObservedTableTracker.getTablesToSync();
if (tablesToSync == null) {
return;
}
final int limit = tablesToSync.length;
try {
database.beginTransaction();
for (int tableId = 0; tableId < limit; tableId++) {
switch (tablesToSync[tableId]) {
case ObservedTableTracker.ADD:
startTrackingTable(database, tableId);
break;
case ObservedTableTracker.REMOVE:
stopTrackingTable(database, tableId);
break;
}
}
database.setTransactionSuccessful();
} finally {
database.endTransaction();
}
InvalidationTracker#getTablesToSync()
int[] getTablesToSync() {
synchronized (this) {
if (!mNeedsSync || mPendingSync) {
return null;
}
final int tableCount = mTableObservers.length;
for (int i = 0; i < tableCount; i++) {
final boolean newState = mTableObservers[i] > 0;
if (newState != mTriggerStates[i]) {
mTriggerStateChanges[i] = newState ? ADD : REMOVE;
} else {
mTriggerStateChanges[i] = NO_OP;
}
mTriggerStates[i] = newState;
}
mPendingSync = true;
mNeedsSync = false;
return mTriggerStateChanges;
}
}
这个getTablesToSync方法很短,但这里就体现了observer计数的作用,它遍历这个表,找出计数与之前不一样的,如果由一个大于0的数变为->0,表明现在没有observer订阅它,返回REMOVE,0->n,返回ADD,否则NO_OP。对于返回ADD的表,就应该是会监听变化的表了。它会执行startTrackingTable方法。
private void startTrackingTable(SupportSQLiteDatabase writableDb, int tableId) {
final String tableName = mTableNames[tableId];
StringBuilder stringBuilder = new StringBuilder();
for (String trigger : TRIGGERS) {
stringBuilder.setLength(0);
stringBuilder.append("CREATE TEMP TRIGGER IF NOT EXISTS ");
appendTriggerName(stringBuilder, tableName, trigger);
stringBuilder.append(" AFTER ")
.append(trigger)
.append(" ON `")
.append(tableName)
.append("` BEGIN INSERT OR REPLACE INTO ")
.append(UPDATE_TABLE_NAME)
.append(" VALUES(null, ")
.append(tableId)
.append("); END");
writableDb.execSQL(stringBuilder.toString());
}
}
到这里我们就很清楚了:实现监听修改的方法是触发器。 (不过我之前仅仅是听说过触发器,很少用过,如果不了解,这里有一份简易的教程)。而触发器关心的操作是这一些:
private static final String[] TRIGGERS = new String[]{"UPDATE", "DELETE", "INSERT"};
对应着更新、删除、插入。当有这些操作时,根据上述触发器语句,会更新一个由InvalidationTracker维护的表"UPDATE_TABLE_NAME"。
InvalidationTracker#UPDATE_TABLE_NAME
private static final String UPDATE_TABLE_NAME = "room_table_modification_log";
InvalidationTracker#internalInit
void internalInit(SupportSQLiteDatabase database) {
synchronized (this) {
if (mInitialized) {
Log.e(Room.LOG_TAG, "Invalidation tracker is initialized twice :/.");
return;
}
database.beginTransaction();
try {
database.execSQL("PRAGMA temp_store = MEMORY;");
database.execSQL("PRAGMA recursive_triggers='ON';");
database.execSQL(CREATE_TRACKING_TABLE_SQL);
database.setTransactionSuccessful();
} finally {
database.endTransaction();
}
syncTriggers(database);
mCleanupStatement = database.compileStatement(RESET_UPDATED_TABLES_SQL);
mInitialized = true;
}
}
注意到表中有这样一列:
INVALIDATED_COLUMN_NAME + " INTEGER NOT NULL DEFAULT 0
在触发器设置的是更新操作时会被设置为1。所以,应该就是检验这个值来判断表是否有更新。那么是哪里进行判断呢?我们可以从一个更新操作开始找,例如BookDao_Impl#insert()
@Override
public long insert(final Book book) {
__db.beginTransaction();
try {
long _result = __insertionAdapterOfBook.insertAndReturnId(book);
__db.setTransactionSuccessful();
return _result;
} finally {
__db.endTransaction();
}
}
最后发现在endTransaction中调用了InvalidationTracker的refreshVersionsAsync方法。而在这个方法中,最终会运行InvalidationTracker的mRefreshRunnable对象的run方法。(注意,和上文的mRefreshRunnbale属于不同类,不是同一个对象。)
RoomDatabase#endTransaction()
public void endTransaction() {
mOpenHelper.getWritableDatabase().endTransaction();
if (!inTransaction()) {
// enqueue refresh only if we are NOT in a transaction. Otherwise, wait for the last
// endTransaction call to do it.
mInvalidationTracker.refreshVersionsAsync();
}
}
InvalidationTracker#mRefreshRunnable#run()
inal Lock closeLock = mDatabase.getCloseLock();
boolean hasUpdatedTable = false;
try {
... 省略
if (mDatabase.mWriteAheadLoggingEnabled) {
// This transaction has to be on the underlying DB rather than the RoomDatabase
// in order to avoid a recursive loop after endTransaction.
SupportSQLiteDatabase db = mDatabase.getOpenHelper().getWritableDatabase();
db.beginTransaction();
try {
hasUpdatedTable = checkUpdatedTable();
db.setTransactionSuccessful();
} finally {
db.endTransaction();
}
} else {
hasUpdatedTable = checkUpdatedTable();
}
} catch (IllegalStateException | SQLiteException exception) {
// may happen if db is closed. just log.
Log.e(Room.LOG_TAG, "Cannot run invalidation tracker. Is the db closed?",
exception);
} finally {
closeLock.unlock();
}
if (hasUpdatedTable) {
// 分发给Observer,最终会更新LiveData
synchronized (mObserverMap) {
for (Map.Entry<Observer, ObserverWrapper> entry : mObserverMap) {
entry.getValue().notifyByTableVersions(mTableInvalidStatus);
}
}
// Reset invalidated status flags.
mTableInvalidStatus.clear();
}
注意,hasUpdatedTable = checkUpdatedTable();
private boolean checkUpdatedTable() {
boolean hasUpdatedTable = false;
Cursor cursor = mDatabase.query(new SimpleSQLiteQuery(SELECT_UPDATED_TABLES_SQL));
//noinspection TryFinallyCanBeTryWithResources
try {
while (cursor.moveToNext()) {
final int tableId = cursor.getInt(0);
mTableInvalidStatus.set(tableId);
hasUpdatedTable = true;
}
} finally {
cursor.close();
}
if (hasUpdatedTable) {
mCleanupStatement.executeUpdateDelete();
}
return hasUpdatedTable;
}
@VisibleForTesting
static final String SELECT_UPDATED_TABLES_SQL = "SELECT * FROM " + UPDATE_TABLE_NAME
+ " WHERE " + INVALIDATED_COLUMN_NAME + " = 1;";
果然,是查找"UPDATE_TABLE_NAME"这个表中"INVALIDATED_COLUMN_NAME"这列为1的记录,然后设置自己的状态。完成这个过程就分发给自己的Observers。
void notifyByTableVersions(BitSet tableInvalidStatus) {
...
if (invalidatedTables != null) {
mObserver.onInvalidated(invalidatedTables);
}
}
而在前文中有说到,注册的Observer实际上是RoomTrackingLiveData的mObserver的包装,最终会调用到它的onInvalidated。
mObserver = new InvalidationTracker.Observer(tableNames) {
@Override
public void onInvalidated(@NonNull Set<String> tables) {
ArchTaskExecutor.getInstance().executeOnMainThread(mInvalidationRunnable);
}
}
final Runnable mInvalidationRunnable = new Runnable() {
@MainThread
@Override
public void run() {
boolean isActive = hasActiveObservers();
if (mInvalid.compareAndSet(false, true)) {
if (isActive) {
mDatabase.getQueryExecutor().execute(mRefreshRunnable);
}
}
}
};
可见,最后会在线程池中执行RoomTrackingLiveData的mRefreshRunnable任务。这个任务前文已经分析过了,通过CAS的方式查询数据,并post给LiveData,这样就实现了数据更新的通知。到这里,Room和LiveData联动的工作原理就大致分析完毕。