HTTPS

为什么存在HTTPS

起初设计 HTTP 协议的目的很单纯,就是为了传输超文本文件,那时候也没有太强的加密传输的数据需求,所以 HTTP 一直保持着明文传输数据的特征。但这样的话,在传输过程中的每一个环节,数据都有可能被窃取或者篡改,这也意味着你和服务器之间还可能有个中间人,你们在通信过程中的一切内容都在中间人的掌握中,如下图:


image.png

从上图可以看出,我们使用 HTTP 传输的内容很容易被中间人窃取、伪造和篡改,通常我们把这种攻击方式称为中间人攻击。
具体来讲,在将 HTTP 数据提交给 TCP 层之后,数据会经过用户电脑、WiFi 路由器、运营商和目标服务器,在这中间的每个环节中,数据都有可能被窃取或篡改。比如用户电脑被黑客安装了恶意软件,那么恶意软件就能抓取和篡改所发出的 HTTP 请求的内容。或者用户一不小心连接上了 WiFi 钓鱼路由器,那么数据也都能被黑客抓取或篡改。

怎么解决不安全问题

在HTTP协议栈中引入安全层
鉴于 HTTP 的明文传输使得传输过程毫无安全性可言,且制约了网上购物、在线转账等一系列场景应用,于是倒逼着我们要引入加密方案。
从 HTTP 协议栈层面来看,我们可以在 TCP 和 HTTP 之间插入一个安全层,所有经过安全层的数据都会被加密或者解密,你可以参考下图:

image.png

总的来说,安全层有两个主要的职责:对发起 HTTP 请求的数据进行加密操作和对接收到 HTTP 的内容进行解密操作

我们知道了安全层最重要的就是加解密,那么接下来我们就利用这个安全层,一步一步实现一个从简单到复杂的 HTTPS 协议。

HTTPS协议

1. 对称加密

对称加密是指加密和解密都使用的是相同的密钥。

image.png

通过将对称加密应用在安全层上,我们实现了第一个版本的 HTTPS,虽然这个版本能够很好地工作,但是其中传输 client-random 和 service-random 的过程却是明文的,这意味着黑客也可以拿到协商的加密套件和双方的随机数,由于利用随机数合成密钥的算法是公开的,所以黑客拿到随机数之后,也可以合成密钥,这样数据依然可以被破解,那么黑客也就可以使用密钥来伪造或篡改数据了。

2. 非对称加密

非对称加密算法有 A、B 两把密钥,如果你用 A 密钥来加密,那么只能使用 B 密钥来解密;反过来,如果你要 B 密钥来加密,那么只能用 A 密钥来解密。

在 HTTPS 中,服务器会将其中的一个密钥通过明文的形式发送给浏览器,我们把这个密钥称为公钥,服务器自己留下的那个密钥称为私钥。顾名思义,公钥是每个人都能获取到的,而私钥只有服务器才能知道,不对任何人公开

image.png

因此采用非对称加密,就能保证浏览器发送给服务器的数据是安全的了,这看上去似乎很完美,不过这种方式依然存在两个严重的问题。

  1. 第一个是非对称加密的效率太低。这会严重影响到加解密数据的速度,进而影响到用户打开页面的速度。
  2. 第二个是无法保证服务器发送给浏览器的数据安全。虽然浏览器端可以使用公钥来加密,但是服务器端只能采用私钥来加密,私钥加密只有公钥能解密,但黑客也是可以获取得到公钥的,这样就不能保证服务器端数据的安全了。

3. 对称加密和非对称加密搭配使用

在传输数据阶段依然使用对称加密,但是对称加密的密钥我们采用非对称加密来传输。

image.png

服务器和浏览器就有了共同的 client-random、service-random 和 pre-master,然后服务器和浏览器会使用这三组随机数生成对称密钥,因为服务器和浏览器使用同一套方法来生成密钥,所以最终生成的密钥也是相同的。
有了对称加密的密钥之后,双方就可以使用对称加密的方式来传输数据了。
pre-master 是经过公钥加密之后传输的,所以黑客无法获取到 pre-master,这样黑客就无法生成密钥,也就保证了黑客无法破解传输过程中的数据了。

4. 数字证书

通过对称和非对称混合方式,我们完美地实现了数据的加密传输。不过这种方式依然存在着问题,比如我要打开极客时间的官网,但是黑客通过 DNS 劫持将极客时间官网的 IP 地址替换成了黑客的 IP 地址,这样我访问的其实是黑客的服务器了,黑客就可以在自己的服务器上实现公钥和私钥,而对浏览器来说,它完全不知道现在访问的是个黑客的站点。

极客时间要证明这个服务器就是极客时间的,也需要使用权威机构颁发的证书,这个权威机构称为 CA(Certificate Authority),颁发的证书就称为数字证书(Digital Certificate)。

对于浏览器来说,数字证书有两个作用:一个是通过数字证书向浏览器证明服务器的身份,另一个是数字证书里面包含了服务器公钥。


image.png

数字证书的申请与验证

总结

由于 HTTP 的明文传输特性,在传输过程中的每一个环节,数据都有可能被窃取或者篡改,这倒逼着我们需要引入加密机制。于是我们在 HTTP 协议栈的 TCP 和 HTTP 层之间插入了一个安全层,负责数据的加密和解密操作。

我们使用对称加密实现了安全层,但是由于对称加密的密钥需要明文传输,所以我们又将对称加密改造成了非对称加密。但是非对称加密效率低且不能加密服务器到浏览器端的数据,于是我们又继续改在安全层,采用对称加密的方式加密传输数据和非对称加密的方式来传输密钥,这样我们就解决传输效率和两端数据安全传输的问题。

采用这种方式虽然能保证数据的安全传输,但是依然没办法证明服务器是可靠的,于是又引入了数字证书,数字证书是由 CA 签名过的,所以浏览器能够验证该证书的可靠性。

自己亲手搭建一个 HTTPS 的站点,可以去 freeSSL 申请免费证书。

来源:https://time.geekbang.org/column/article/156181

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,496评论 6 501
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,407评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,632评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,180评论 1 292
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,198评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,165评论 1 299
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,052评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,910评论 0 274
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,324评论 1 310
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,542评论 2 332
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,711评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,424评论 5 343
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,017评论 3 326
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,668评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,823评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,722评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,611评论 2 353

推荐阅读更多精彩内容

  • 1. 验证通信安全的四大特性 机密性:就是指对数据的保密性。简单来说,就是不能让不相关的人看到不该看的东西。 完整...
    allen218阅读 894评论 0 0
  • 我们都知道 HTTP 是明文传输的,所以在传输过程中,很容易被中间人窃取、伪造和篡改 这种攻击方式,我们称为中间人...
    bestCindy阅读 235评论 0 0
  • “姑娘们,起来吃毓婷啦!”520刚过去,5月21号早上这句话就突然火了,像我这种单纯的小宝宝根本不知道是什么意思。...
    大公爵阅读 733评论 0 6
  • 什么是HTTPS协议呢?如果大家还没有深刻理解HTTP协议,请查找一下我的HTTP协议的文章。 HTTP协议是一个...
    编程视界阅读 256评论 0 0
  • 关于加密 在解释SSH、SSL与HTTPS协议之前我先介绍一下非对称加密协议。在1976年以前,所有的加密都采用对...
    我在睡觉阅读 31,202评论 14 52