Probability Theory 概率理论(2)

In order to derive the rules of probability, consider the slightly more general example shown in Figure 1.10 involving two random variables X and Y (which could for instance be the Box and Fruit variables considered above). We shall suppose that X can take any of the values xi where i =1,...,M, and Y can take the values yj where j =1,...,L. Consider a total of N trials in which we sample both of the variables X and Y , and let the number of such trials in which X = xi and Y = yj be nij. Also, let the number of trials in which X takes the value xi (irrespective of the value that Y takes) be denoted by ci, and similarly let the number of trials in which Y takes the value yj be denoted by rj.

为了引出概率的规则,假设一个更一般化的例子,如图1.10,有两个随机变量X和Y。我们会假设X可以取任何的xi,其中i=1,...,M,;Y能取任何yj,其中j=1,...,L.假设进行了N次试验,其中我们抽样两个随机变量X和Y,让X=xi并且Y=yj的次数是nij。并且,X是xi的次数,记为ci,类似,Y=yj的次数,记为rj。


The probability that X will take the value xi and Y will take the value yj is written p(X = xi, Y = yj ) and is called the joint probability of X = xi and

X取Y取得概率记作p(X= Y=),即叫做X=Y=的联合概率。

Y = yj . It is given by the number of points falling in the cell i,j as a fraction of the total number of points, and hence

它就是落在i,j空格里的点的个数和所有点总数的比率。因此有

Here we are implicitly considering the limit N → ∞. Similarly, the probability that X takes the value xi irrespective of the value of Y is written as p(X = x_{i} ) and is  given by the fraction of the total number of points that fall in column i, so that Because the number of instances in column i in Figure 1.10 is just the sum of the number of instances in each cell of that column, we have ci = \sum\nolimits_{j}n_{ij}   j nij and therefore,

在这里我们考虑N趋于无群大,相似的,不管Y取什么,p(X=)的概率是落入i列,即c i= n ij,因此

from (1.5) and (1.6), we have

结合公式1.5和1.6,我们有

which is the sum rule of probability. Note that p(X = xi) is sometimes called the marginal probability, because it is obtained by marginalizing, or summing out, the other variables (in this case Y ). If we consider only those instances for which X = xi, then the fraction of such instances for which Y = yj is written p(Y = yj |X = xi) and is called the conditional probability of Y = yj given X = xi. It is obtained by finding the fraction of those points in column i that fall in cell i,j and hence is given by

这就是概率的加法规则。注意P(X=xi)有时也叫做边际概率,因为它是通过边缘化或者加和了其他变量得到的,如果我们考虑仅当X=xi时的情况,那在这种情况下Y=yj的部分,记作当X=xi时,Y=yj的条件概率。它是在i列中落在空格ij的部分,公式如下

From (1.5), (1.6), and (1.8), we can then derive the following relationship

结合1.5 1.6和1.8,我们能推到出下面的关系,

which is the product rule of probability.

这是概率的乘法规则。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,684评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,143评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,214评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,788评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,796评论 5 368
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,665评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,027评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,679评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 41,346评论 1 299
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,664评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,766评论 1 331
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,412评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,015评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,974评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,203评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,073评论 2 350
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,501评论 2 343

推荐阅读更多精彩内容

  • A key concept in the field of pattern recognition is that ...
    Eric_dsc阅读 413评论 0 1
  • 夜莺2517阅读 127,709评论 1 9
  • 版本:ios 1.2.1 亮点: 1.app角标可以实时更新天气温度或选择空气质量,建议处女座就不要选了,不然老想...
    我就是沉沉阅读 6,876评论 1 6
  • 我是一名过去式的高三狗,很可悲,在这三年里我没有恋爱,看着同龄的小伙伴们一对儿一对儿的,我的心不好受。怎么说呢,高...
    小娘纸阅读 3,375评论 4 7
  • 我是黑夜里大雨纷飞的人啊 1 “又到一年六月,有人笑有人哭,有人欢乐有人忧愁,有人惊喜有人失落,有的觉得收获满满有...
    陌忘宇阅读 8,520评论 28 53