Spark 2.1 structured streaming

最近(12月8日), Spark 2.1 版本正式发布。2.1版本是第二个Spark2.x版本。又增强了Spark对于Structured streaming的支持,包括数据源对Kafka的支持,以及新增的streaming中对于event time watermark的支持。

什么是structured streaming ?

在Spark2.0时,Spark引入了structured streaming,structured streaming是建立在Spark SQL之上的可扩展和高容错的流处理架构。不同于Spark1.x时代的DStream和ForeachRDD, structured streaming的目的是使用户能够像使用Spark SQL处理批处理一样,能够使用相同的方法处理流数据。Spark SQL引擎会递增式的处理到来的数据,并且持续更新流处理输出的数据。

当前的structured streaming 特性还是处于alpha版本,可以进行实验环境的验证,不建议进行生产环境

没有边界的大表

不同于Spark1.x使用interval将流数据分为不同的mini batch, structured streaming将流数据看作是一张没有边界的表,流数据不断的向表尾增加数据。如下图所示:


structured-streaming-stream-as-a-table.png

在每一个周期时,新的内容将会增加到表尾,查询的结果将会更新到结果表中。一旦结果表被更新,就需要将改变后的表内容输出到外部的sink中。

structured streaming支持三种输出模式:

  • Complete mode: 整个更新的结果表都会被输出。
  • Append mode: 只有新增加到结果表的数据会被输出。
  • Updated mode: 只有被更新的结果表会输出。当前版本暂不支持这个特性

Word count

structured-streaming-example-model.png

不同于Spark1.x,用户需要自己保存历史的数据,structured steaming会帮助用户维护历史的计算数据放到结果表中,每次只需要更新结果表的数据。

Event time

  • event time作为Row的一列,表示的event的实际时间,而不是到达streaming处理的时间。
  • event time可以用来进行基于时间相关的计算

watermark处理延迟数据

上面提到了structured streaming可以维护历史的数据,但是如果一条数据的到来时间延迟过长,那么计算这条数据没有什么意义。因此需要一种机制丢弃掉延迟到来的数据。在Spark2.1中,引入了watermark机制。watermark指定列名称为event time的,并且定义了数据延迟到大的最大阈值。超过这个阈值到来的数据将会被忽略。
使用示例如下:

import spark.implicits._

val words = ... // streaming DataFrame of schema { timestamp: Timestamp, word: String }

// Group the data by window and word and compute the count of each group
val windowedCounts = words
    .withWatermark("timestamp", "10 minutes")
    .groupBy(
        window($"timestamp", "10 minutes", "5 minutes"),
        $"word")
    .count()

Kafka支持

Spark2.1支持Kafka0.10.0集成structured streaming. 可以支持从一个topic,多个topic读入数据生成data frame.

// Subscribe to 1 topic
val ds1 = spark
  .readStream
  .format("kafka")
  .option("kafka.bootstrap.servers", "host1:port1,host2:port2")
  .option("subscribe", "topic1")
  .load()
ds1.selectExpr("CAST(key AS STRING)", "CAST(value AS STRING)")
  .as[(String, String)]

// Subscribe to multiple topics
val ds2 = spark
  .readStream
  .format("kafka")
  .option("kafka.bootstrap.servers", "host1:port1,host2:port2")
  .option("subscribe", "topic1,topic2")
  .load()
ds2.selectExpr("CAST(key AS STRING)", "CAST(value AS STRING)")
  .as[(String, String)]

// Subscribe to a pattern
val ds3 = spark
  .readStream
  .format("kafka")
  .option("kafka.bootstrap.servers", "host1:port1,host2:port2")
  .option("subscribePattern", "topic.*")
  .load()
ds3.selectExpr("CAST(key AS STRING)", "CAST(value AS STRING)")
  .as[(String, String)]
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,186评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,858评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,620评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,888评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,009评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,149评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,204评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,956评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,385评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,698评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,863评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,544评论 4 335
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,185评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,899评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,141评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,684评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,750评论 2 351

推荐阅读更多精彩内容