keras_1

用 Keras 构建神经网络

(摘录自udacity)

要使用 Keras,你需要知道以下几个核心概念。

序列模型

    from keras.models import Sequential

    #Create the Sequential model
    model = Sequential()

keras.models.Sequential 类是神经网络模型的封装容器。它会提供常见的函数,例如 fit()evaluate()compile()。我们将介绍这些函数(在碰到这些函数的时候)。我们开始研究模型的层吧。

Keras 层就像神经网络层。有全连接层、最大池化层和激活层。你可以使用模型的 add() 函数添加层。例如,简单的模型可以如下所示:

    from keras.models import Sequential
    from keras.layers.core import Dense, Activation, Flatten

    #创建序列模型
    model = Sequential()

    #第一层 - 添加有128个节点的全连接层以及32个节点的输入层
    model.add(Dense(128, input_dim=32))

    #第二层 - 添加 softmax 激活层
    model.add(Activation('softmax'))

    #第三层 - 添加全连接层
    model.add(Dense(10))

    #第四层 - 添加 Sigmoid 激活层
    model.add(Activation('sigmoid'))

Keras 将根据第一层自动推断后续所有层的形状。这意味着,你只需为第一层设置输入维度。

上面的第一层 model.add(Dense(input_dim=32)) 将维度设为 32(表示数据来自 32 维空间)。第二层级获取第一层级的输出,并将输出维度设为 128 个节点。这种将输出传递给下一层级的链继续下去,直到最后一个层级(即模型的输出)。可以看出输出维度是 10。

构建好模型后,我们就可以用以下命令对其进行编译。我们将损失函数指定为我们一直处理的 categorical_crossentropy。我们还可以指定优化程序,稍后我们将了解这一概念,暂时将使用 adam。最后,我们可以指定评估模型用到的指标。我们将使用准确率。

model.compile(loss="categorical_crossentropy", optimizer="adam", metrics = ['accuracy'])

我们可以使用以下命令来查看模型架构:

model.summary()

然后使用以下命令对其进行拟合,指定 epoch 次数和我们希望在屏幕上显示的信息详细程度。

然后使用fit命令训练模型并通过 epoch 参数来指定训练轮数(周期),每 epoch 完成对整数据集的一次遍历。 verbose 参数可以指定显示训练过程信息类型,这里定义为 0 表示不显示信息。

model.fit(X, y, nb_epoch=1000, verbose=0)

注意:在 Keras 1 中,nb_epoch 会设置 epoch 次数,但是在 Keras 2 中,变成了 epochs

最后,我们可以使用以下命令来评估模型:

model.evaluate()

KERAS优化器原理

Keras 优化程序

Keras 中有很多优化程序,建议你访问此链接或这篇精彩博文(此链接来自外网,国内网络可能打不开),详细了解这些优化程序。这些优化程序结合使用了上述技巧,以及其他一些技巧。最常见的包括:

SGD

这是随机梯度下降。它使用了以下参数:

  • 学习速率。
  • 动量(获取前几步的加权平均值,以便获得动量而不至于陷在局部最低点)。
  • Nesterov 动量(当最接近解决方案时,它会减缓梯度)。

Adam

Adam (Adaptive Moment Estimation) 使用更复杂的指数衰减,不仅仅会考虑平均值(第一个动量),并且会考虑前几步的方差(第二个动量)。

RMSProp

RMSProp (RMS 表示均方根误差)通过除以按指数衰减的平方梯度均值来减小学习速率。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,616评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,020评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,078评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,040评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,154评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,265评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,298评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,072评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,491评论 1 306
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,795评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,970评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,654评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,272评论 3 318
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,985评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,223评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,815评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,852评论 2 351

推荐阅读更多精彩内容

  • 选择Keras作为开发工具,主要在于Keras具有以下优点: Keras 是tensorflow封装后的API,使...
    CodeFUN阅读 391评论 0 0
  • 前提 (多机多GPU运行前提)安装了分布式文件共享或者类似的网络文件共享,即在运行keras时,目录需要一致.或者...
    reallocing阅读 4,474评论 1 3
  • 机器学习术语表 本术语表中列出了一般的机器学习术语和 TensorFlow 专用术语的定义。 A A/B 测试 (...
    yalesaleng阅读 1,961评论 0 11
  • 原文链接:http://blog.csdn.net/u012162613/article/details/4539...
    dopami阅读 1,295评论 0 4
  • 今天特别困,从岛上回来上班的第五天。 睡得晚,中午出去转悠,在车上几乎睡着了。约好去试架子鼓和吉他。我就按照时间去...
    ninvxv阅读 112评论 0 0