HiveQL 数据定义:分区

分区
• 建立分区表
• 增加分区
• 重命名分区
• 删除分区

hive组织表到分区。它是将一个表到基于分区列,如日期,城市和部门的值相关方式。使用分区,很容易对数据进行部分查询

表或分区可以细分成桶,以提供额外的结构,可以使用更高效的查询的数据。桶的工作是基于表的一些列的散列函数值。

例如,一个名为Tab1表包含雇员数据,如 id,name,deptyoj (即加盟年份)。假设需要检索所有在2012年加入,查询搜索整个表所需的信息员工的详细信息。但是,如果用年份分区雇员数据并将其存储在一个单独的文件,它减少了查询处理时间。下面的示例演示如何分区的文件和数据:

下面文件包含employee 数据表。

/tab1/employeedata/file1

id, name, dept, yoj
1, gopal, TP, 2012
2, kiran, HR, 2012
3, kaleel,SC, 2013
4, Prasanth, SC, 2013

上面的数据被划分成使用年两个文件。

/tab1/employeedata/2012/file2

1, gopal, TP, 2012
2, kiran, HR, 2012

/tab1/employeedata/2013/file3

3, kaleel,SC, 2013
4, Prasanth, SC, 2013

这就是两个分区文件

建分区表
CREATE TABLE par_table(viewTime INT, userid BIGINT,
     page_url STRING, referrer_url STRING,
     ip STRING COMMENT 'IP Address of the User')
    COMMENT 'This is the page view table'
    PARTITIONED BY(date STRING, pos STRING)
    ROW FORMAT DELIMITED ‘\t’
    FIELDS TERMINATED BY '\n'
    STORED AS SEQUENCEFILE;
增加分区

可以通过添加分区表改变所述表。假设我们有一个表叫employee ,拥有如 Id,Name,Salary, Designation, Dept, 和 yoj等字段。
语法:

ALTER TABLE table_name ADD [IF NOT EXISTS] PARTITION partition_spec
[LOCATION 'location1'] partition_spec [LOCATION 'location2'] ...;

partition_spec:
: (p_column = p_col_value, p_column = p_col_value, ...)

以下查询用于将分区添加到employee表。

hive> ALTER TABLE employee
> ADD PARTITION (year=’2012’)
> location '/2012/part2012';
重命名分区

此命令的语法如下。

ALTER TABLE table_name PARTITION partition_spec RENAME TO PARTITION partition_spec;

以下查询用来命名一个分区:

hive> ALTER TABLE employee PARTITION (year=’1203’)
   > RENAME TO PARTITION (Yoj=’1203’);
删除分区

下面语法用于删除分区:

ALTER TABLE table_name DROP [IF EXISTS] PARTITION partition_spec, PARTITION partition_spec,...;

以下查询是用来删除分区:

hive> ALTER TABLE employee DROP [IF EXISTS]
   > PARTITION (year=’1203’);
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,692评论 6 501
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,482评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,995评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,223评论 1 292
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,245评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,208评论 1 299
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,091评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,929评论 0 274
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,346评论 1 311
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,570评论 2 333
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,739评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,437评论 5 344
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,037评论 3 326
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,677评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,833评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,760评论 2 369
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,647评论 2 354

推荐阅读更多精彩内容