最小生成树

最小生成树要求:

首先,保证所有点连通,其次保证边的权重和最低
应用范围:无向图

Kruskal(克鲁斯卡尔)算法:

思路:

依次找权值最小的边,直到遍历完边并且不形成环为止。
实现方法用的并查集,首先把图的所有变放到一个小根堆里,然后从小根堆poll,判断poll出的边edge的fromNode和toNode在不在并查集里,即他们的父节点是不是一样的,如果一样就说明形成环了,如果没有就把这两个点加入到并查集合里,执行直到小根堆为空

代码:

    public static class UnionFind {
                //key 当前结点 value 父节点
        private HashMap<Node, Node> fatherMap;
                //当前集合的大小(最后就用头节点的大小来表示,size存在头节点中)
        private HashMap<Node, Integer> rankMap;

        public UnionFind() {
            fatherMap = new HashMap<Node, Node>();
            rankMap = new HashMap<Node, Integer>();
        }

        private Node findFather(Node n) {
            Node father = fatherMap.get(n);
            if (father != n) {
                father = findFather(father);
            }
            fatherMap.put(n, father);
            return father;
        }

        public void makeSets(Collection<Node> nodes) {
            fatherMap.clear();
            rankMap.clear();
            for (Node node : nodes) {
                fatherMap.put(node, node);
                rankMap.put(node, 1);
            }
        }

        public boolean isSameSet(Node a, Node b) {
            return findFather(a) == findFather(b);
        }

        public void union(Node a, Node b) {
            if (a == null || b == null) {
                return;
            }
            Node aFather = findFather(a);
            Node bFather = findFather(b);
            if (aFather != bFather) {
                int aFrank = rankMap.get(aFather);
                int bFrank = rankMap.get(bFather);
                if (aFrank <= bFrank) {
                    fatherMap.put(aFather, bFather);
                    rankMap.put(bFather, aFrank + bFrank);
                } else {
                    fatherMap.put(bFather, aFather);
                    rankMap.put(aFather, aFrank + bFrank);
                }
            }
        }
    }

    public static class EdgeComparator implements Comparator<Edge> {

        @Override
        public int compare(Edge o1, Edge o2) {
            return o1.weight - o2.weight;
        }

    }

    public static Set<Edge> kruskalMST(Graph graph) {
        UnionFind unionFind = new UnionFind();
        unionFind.makeSets(graph.nodes.values());
        PriorityQueue<Edge> priorityQueue = new PriorityQueue<>(new EdgeComparator());
        for (Edge edge : graph.edges) {
            priorityQueue.add(edge);
        }
        Set<Edge> result = new HashSet<>();
        while (!priorityQueue.isEmpty()) {
            Edge edge = priorityQueue.poll();
            if (!unionFind.isSameSet(edge.from, edge.to)) {
                result.add(edge);
                unionFind.union(edge.from, edge.to);
            }
        }
        return result;
    }

Prim(普里姆)算法:

思路:

创建一个优先级队列(小根堆),创建一个Hashset set用来存已经经过的节点,再创建一个Set result 来存结果边,从所有节点中随机选一个节点,判断该节点是否在set里,如果不在就加入,然后把当前node的所有的边加入到优先级队列,然后弹出小根堆的堆顶,即当前节点所连边权值最小的那一条,然后判断这条边所连的节点toNode,是否在set中如果不在,就加入,同时把边加入到result中,然后再把toNode所连的所有边加入到优先级队列(小根堆里),依次执行下去,得出结果。
总结起来一句话:随机找一个节点,通过这个节点找权值最小的边,通过这条边再找节点,节点如果没遍历,就继续从这个节点找权值最小的边,最后结束。

代码:

    public static class EdgeComparator implements Comparator<Edge> {

        @Override
        public int compare(Edge o1, Edge o2) {
            return o1.weight - o2.weight;
        }

    }

    public static Set<Edge> primMST(Graph graph) {
        PriorityQueue<Edge> priorityQueue = new PriorityQueue<>(new EdgeComparator());
        HashSet<Node> set = new HashSet<>();
        Set<Edge> result = new HashSet<>();
        for (Node node : graph.nodes.values()) {
            if (!set.contains(node)) {
                set.add(node);
                for (Edge edge : node.edges) {
                    priorityQueue.add(edge);
                }
                while (!priorityQueue.isEmpty()) {
                    Edge edge = priorityQueue.poll();
                    Node toNode = edge.to;
                    if (!set.contains(toNode)) {
                        set.add(toNode);
                        result.add(edge);
                        for (Edge nextEdge : toNode.edges) {
                            priorityQueue.add(nextEdge);
                        }
                    }
                }
            }
        }
        return result;
    }

注意:代码上的最开始的超级循环是用来处理森林的问题,比如一个图有森林(森林:n棵互不相交的树),你第一次选的起始点遍历完后,就只能处理一棵树,第二棵没有处理,所以这时候遍历所有节点结合判断set里是否有遍历的当前node,即可完成所有树的最小生成树的查找。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,921评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,635评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,393评论 0 338
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,836评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,833评论 5 368
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,685评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,043评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,694评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 42,671评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,670评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,779评论 1 332
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,424评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,027评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,984评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,214评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,108评论 2 351
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,517评论 2 343

推荐阅读更多精彩内容