高斯拉普拉斯算子LOG

高斯拉普拉斯算子(LOG,Laplacian of Gaussian)常用于边缘/角点检测。其原理是利用拉普拉斯算子识别图像中灰度值变化速度极大值点,利用高斯核平滑图像、以降低拉普拉斯算子对噪声敏感带来的问题。

所以,LOG是由高斯函数和拉普拉斯算子组成的。以下将介绍

1)高斯函数

2)拉普拉斯算子

3)二者结合的必要性

4)LOG的平替

高斯函数

高斯函数卷积核与图像进行卷积,目的是为了平滑图像,这个卷积过程也常被成为【高斯平滑】。实质是以高斯函数的积分值作为权重对卷积区域的点进行加权求和,卷积区域的中心点对应的权重对应高斯函数对称轴附件区域的积分值,权重最高。所以此平滑方法能够有效地刻画【边缘效应】。

高斯函数公式:G(x,y)=\frac{1}{2\Pi \sigma ^2 } EXP\left\{ -\frac{x^2 +y^2 }{2\sigma ^2 }  \right\}

二维高斯函数图像

其中,\sigma 为标准差,其值越大,平滑程度越大。可以根据高斯函数曲线去理解,标准差越大,曲线越矮胖,邻域像素值的权重也就越大。

如何确定高斯核的大小呢?研究表明,距离中心点3\sigma 范围外的点一般作用很小,所以高斯核尺寸通常为6(\sigma +1)\times 6(\sigma +1)

拉普拉斯算子

拉普拉斯算子是对图像求两个方向的二阶导数之和,其中I为图像像素的灰度值I(x,y)

求导,可以获得局部区域的灰度值变化幅度,从而检测出边缘/角点。至于为什么求二阶导而不是一阶导,是因为一阶导之后求的是极值,二阶导之后求的是零点,零点比极值更方便获得。

二者结合的必要性

首先,求导使计算对噪点变得很敏感,需要在求导之前先进行图像平滑。

其次,先对图像进行高斯卷积,再进行拉普拉斯算子卷积,两次卷积会产生较大计算量。而根据卷积运算的结合律,可以先计算高斯函数与拉普拉斯算子,形成一个卷积核,然后对图像进行一次卷积,大大减小计算量

LOG的平替

我们常用DOG(Difference of Gaussian)来近似LOG,这是将两个大小不同的高斯核与图像分别卷积后进行差分,可以产生一种LOG的平方近似。在计算速度上有较大的提高



参考文献

https://zhuanlan.zhihu.com/p/92143464 

http://jgwu.top/blogs/Laplacian-of-Gaussian-LOG-%E9%AB%98%E6%96%AF%E6%8B%89%E6%99%AE%E6%8B%89%E6%96%AF%E7%AE%97%E5%AD%90/ 

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,193评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,306评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,130评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,110评论 1 292
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,118评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,085评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,007评论 3 417
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,844评论 0 273
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,283评论 1 310
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,508评论 2 332
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,667评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,395评论 5 343
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,985评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,630评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,797评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,653评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,553评论 2 352

推荐阅读更多精彩内容