1. synchronized介绍
在java代码中使用synchronized可以使用在代码块和方法中,根据Synchronized用的位置可以有这些使用场景:
如图,synchronized可以用在方法上也可以使用在代码块中,其中方法是实例方法和静态方法分别锁的是该类的实例对象和该类的对象。而使用在代码块中也可以分为三种,具体的可以看上面的表格。这里需要注意的是:如果锁的是类对象的话,尽管new多个实例对象,但他们仍然是属于同一个类依然会被锁住,即线程之间保证同步关系。
2.1 对象锁(monitor)机制
2.2 synchronized修饰代码块
先写一个简单的demo:
public class SynchronizedDemo {
public static void main(String[] args) {
synchronized (SynchronizedDemo.class) {
}
method();
}
private static void method() {
}
}
上面的代码中有一个同步代码块,锁住的是类对象,并且还有一个同步静态方法,锁住的依然是该类的类对象。编译之后,切换到SynchronizedDemo.class的同级目录之后,然后用javap -v SynchronizedDemo.class查看字节码文件:
如图,上面用黄色高亮的部分就是需要注意的部分了,这也是添Synchronized关键字之后独有的。执行同步代码块后首先要先执行monitorenter指令,退出的时候monitorexit指令。通过分析之后可以看出,使用Synchronized进行同步,其关键就是必须要对对象的监视器monitor进行获取,当线程获取monitor后才能继续往下执行,否则就只能等待。而这个获取的过程是互斥的,即同一时刻只有一个线程能够获取到monitor。上面的demo中在执行完同步代码块之后紧接着再会去执行一个静态同步方法,而这个方法锁的对象依然就这个类对象,那么这个正在执行的线程还需要获取该锁吗?答案是不必的,从上图中就可以看出来,执行静态同步方法的时候就只有一条monitorexit指令,并没有monitorenter获取锁的指令。这就是锁的重入性,即在同一锁程中,线程不需要再次获取同一把锁。Synchronized先天具有重入性。每个对象拥有一个计数器,当线程获取该对象锁后,计数器就会加一,释放锁后就会将计数器减一。
也即monitor的count计数器变化为:
(1)获取锁
count++
(2)获取锁,可重入,但是并没有monitorenter指令
count++
(3)释放锁
count--
(4)释放锁
count--
2.3 synchronized修饰方法名
public class SyncMethod {
public int i;
public synchronized void syncTask(){
i++;
}
}
//==================syncTask方法======================
public synchronized void syncTask();
descriptor: ()V
//方法标识ACC_PUBLIC代表public修饰,ACC_SYNCHRONIZED指明该方法为同步方法
flags: ACC_PUBLIC, ACC_SYNCHRONIZED
Code:
stack=3, locals=1, args_size=1
0: aload_0
1: dup
2: getfield #2 // Field i:I
5: iconst_1
6: iadd
7: putfield #2 // Field i:I
10: return
LineNumberTable:
line 12: 0
line 13: 10
从字节码可以看出,synchronized修饰的方法并没有monitorenter和monitorexit指令。而是用ACC_SYNCHRONIZED的flag标记该方法是否是同步方法,从而执行相应的同步调用。
任意一个对象都拥有自己的监视器,当这个对象由同步块或者这个对象的同步方法调用时,执行方法的线程必须先获取该对象的监视器才能进入同步块和同步方法,如果没有获取到监视器的线程将会被阻塞在同步块和同步方法的入口处,进入到BLOCKED状态。
下图表现了对象,对象监视器,同步队列以及执行线程状态之间的关系:
该图可以看出,任意线程对Object的访问,首先要获得Object的监视器,如果获取失败,该线程就进入同步状态,线程状态变为BLOCKED,当Object的监视器占有者释放后,在同步队列中的线程就会有机会重新获取该监视器。
Java虚拟机中的同步(Synchronization)都是基于进入和退出Monitor对象实现,无论是显示同步(同步代码块)还是隐式同步(同步方法)都是如此。
对于同步代码块
monitorenter指令插入到同步代码块的开始位置。monitorexit指令插入到同步代码块结束的位置。JVM需要保证每一个monitorenter都有一个monitorexit与之对应。
任何对象,都有一个monitor与之相关联,当monitor被持有以后,它将处于锁定状态。线程执行到monitorenter指令时,会尝试获得monitor对象的所有权,即尝试获取锁。
虚拟机规范对 monitorenter 和 monitorexit 的行为描述中,有两点需要注意。首先 synchronized 同步快对于同一条线程来说是可重入的,也就是说,不会出现把自己锁死的问题。其次,同步快在已进入的线程执行完之前,会阻塞后面其他线程的进入。(摘自《深入理解JAVA虚拟机》)
对于同步方法
synchronized方法则会被翻译成普通的方法调用和返回指令如:invokevirtual、areturn指令,在JVM字节码层面并没有任何特别的指令来实现被synchronized修饰的方法,而是在Class文件的方法表中将该方法的access_flags字段中的synchronized标志位置1,表示该方法是同步方法并使用调用该方法的对象或该方法所属的Class在JVM的内部对象表示Klass做为锁对象。
而对于为什么对象加synchronized关键字可以实现锁,为什么new一个对象和monitor产生关系,他们之前是怎么的结构,monitor对象又是由什么组成,参考如下
一、对象的内存布局
HotSpot虚拟机中,对象在内存中存储的布局可以分为三块区域:对象头(Header)、实例数据(Instance Data)和对齐填充(Padding)。
从上面的这张图里面可以看出,对象在内存中的结构主要包含以下几个部分:
- Mark Word(标记字段):对象的Mark Word部分占4个字节,其内容是一系列的标记位,比如轻量级锁的标记位,偏向锁标记位等等。
- Klass Pointer(Class对象指针):Class对象指针的大小也是4个字节,其指向的位置是对象对应的Class对象(其对应的元数据对象)的内存地址
- 对象实际数据:这里面包括了对象的所有成员变量,其大小由各个成员变量的大小决定,比如:byte和boolean是1个字节,short和char是2个字节,int和float是4个字节,long和double是8个字节,reference是4个字节
- 对齐:最后一部分是对齐填充的字节,按8个字节填充。
1.1、对象头
1.1.1、Mark Word(标记字段)
HotSpot虚拟机的对象头包括两部分信息,第一部分是“Mark Word”,用于存储对象自身的运行时数据, 如哈希码(HashCode)、GC分代年龄、锁状态标志、线程持有的锁、偏向线程ID、偏向时间戳等等,这部分数据的长度在32位和64位的虚拟机(暂 不考虑开启压缩指针的场景)中分别为32个和64个Bits,官方称它为“Mark Word”。对象需要存储的运行时数据很多,其实已经超出了32、64位Bitmap结构所能记录的限度,但是对象头信息是与对象自身定义的数据无关的额 外存储成本,考虑到虚拟机的空间效率,Mark Word被设计成一个非固定的数据结构以便在极小的空间内存储尽量多的信息,它会根据对象的状态复用自己的存储空间。例如在32位的HotSpot虚拟机 中对象未被锁定的状态下,Mark Word的32个Bits空间中的25Bits用于存储对象哈希码(HashCode),4Bits用于存储对象分代年龄,2Bits用于存储锁标志 位,1Bit固定为0,在其他状态(轻量级锁定、重量级锁定、GC标记、可偏向)下对象的存储内容如下表所示。
但是如果对象是数组类型,则需要三个机器码,因为JVM虚拟机可以通过Java对象的元数据信息确定Java对象的大小,但是无法从数组的元数据来确认数组的大小,所以用一块来记录数组长度。
对象头信息是与对象自身定义的数据无关的额外存储成本,但是考虑到虚拟机的空间效率,Mark Word被设计成一个非固定的数据结构以便在极小的空间内存存储尽量多的数据,它会根据对象的状态复用自己的存储空间,也就是说,Mark Word会随着程序的运行发生变化,变化状态如下(32位虚拟机):
注意偏向锁、轻量级锁、重量级锁等都是jdk 1.6以后引入的。
其中轻量级锁和偏向锁是Java 6 对 synchronized 锁进行优化后新增加的,稍后我们会简要分析。这里我们主要分析一下重量级锁也就是通常说synchronized的对象锁,锁标识位为10,其中指针指向的是monitor对象(也称为管程或监视器锁)的起始地址。每个对象都存在着一个 monitor 与之关联,对象与其 monitor 之间的关系有存在多种实现方式,如monitor可以与对象一起创建销毁或当线程试图获取对象锁时自动生成,但当一个 monitor 被某个线程持有后,它便处于锁定状态。在Java虚拟机(HotSpot)中,monitor是由ObjectMonitor实现的,其主要数据结构如下(位于HotSpot虚拟机源码ObjectMonitor.hpp文件,C++实现的)
ObjectMonitor() {
_header = NULL;
_count = 0; //记录个数
_waiters = 0,
_recursions = 0;
_object = NULL;
_owner = NULL;
_WaitSet = NULL; //处于wait状态的线程,会被加入到_WaitSet
_WaitSetLock = 0 ;
_Responsible = NULL ;
_succ = NULL ;
_cxq = NULL ;
FreeNext = NULL ;
_EntryList = NULL ; //处于等待锁block状态的线程,会被加入到该列表
_SpinFreq = 0 ;
_SpinClock = 0 ;
OwnerIsThread = 0 ;
}
ObjectMonitor中有两个队列,_WaitSet 和 _EntryList,用来保存ObjectWaiter对象列表( 每个等待锁的线程都会被封装成ObjectWaiter对象),_owner指向持有ObjectMonitor对象的线程,当多个线程同时访问一段同步代码时,首先会进入 _EntryList 集合,当线程获取到对象的monitor 后进入 _Owner 区域并把monitor中的owner变量设置为当前线程同时monitor中的计数器count加1,若线程调用 wait() 方法,将释放当前持有的monitor,owner变量恢复为null,count自减1,同时该线程进入 WaitSe t集合中等待被唤醒。若当前线程执行完毕也将释放monitor(锁)并复位变量的值,以便其他线程进入获取monitor(锁)。如下图所示
由此看来,monitor对象存在于每个Java对象的对象头中(存储的指针的指向),synchronized锁便是通过这种方式获取锁的,也是为什么Java中任意对象可以作为锁的原因,同时也是notify/notifyAll/wait等方法存在于顶级对象Object中的原因(关于这点稍后还会进行分析),ok~,有了上述知识基础后,下面我们将进一步分析synchronized在字节码层面的具体语义实现。
对象头的另外一部分是类型指针,即是对象指向它的类的元数据的指针,虚拟机通过这个指针来确定这个对象是哪个类的实例。并不是所有的虚拟机实现都必须在对象数据上保留类型指针,换句话说查找对象的元数据信息并不一定要经过对象本身。另外,如果对象是一个Java数组,那在对象头中还必须有一块用于记录数组长度的数据,因为虚拟机可以通过普通Java对象的元数据信息确定Java对象的大小,但是从数组的元数据中无法确定数组的大小。
以下是HotSpot虚拟机markOop.cpp中的C++代码(注释)片段,它描述了32bits下MarkWord的存储状态:
// Bit-format of an object header (most significant first, big endian layout below):
//
// 32 bits:
// --------
// hash:25 ------------>| age:4 biased_lock:1 lock:2 (normal object)
// JavaThread*:23 epoch:2 age:4 biased_lock:1 lock:2 (biased object)
// size:32 ------------------------------------------>| (CMS free block)
// PromotedObject*:29 ---------->| promo_bits:3 ----->| (CMS promoted object)
1.2、实例数据(Instance Data)
接下来实例数据部分是对象真正存储的有效信息,也既是我们在程序代码里面所定义的各种类型的字段内容,无论是从父类继承下来的,还是在子类中定义的都需要记录下来。 这部分的存储顺序会受到虚拟机分配策略参数(FieldsAllocationStyle)和字段在Java源码中定义顺序的影响。HotSpot虚拟机 默认的分配策略为longs/doubles、ints、shorts/chars、bytes/booleans、oops(Ordinary Object Pointers),从分配策略中可以看出,相同宽度的字段总是被分配到一起。在满足这个前提条件的情况下,在父类中定义的变量会出现在子类之前。如果 CompactFields参数值为true(默认为true),那子类之中较窄的变量也可能会插入到父类变量的空隙之中。
1.3、对齐填充(Padding)
第三部分对齐填充并不是必然存在的,也没有特别的含义,它仅仅起着占位符的作用。由于HotSpot VM的自动内存管理系统要求对象起始地址必须是8字节的整数倍,换句话说就是对象的大小必须是8字节的整数倍。对象头正好是8字节的倍数(1倍或者2倍),因此当对象实例数据部分没有对齐的话,就需要通过对齐填充来补全。
二、对象的创建过程
Java是一门面向对象的编程语言,Java程序运行过程中无时无刻都有对象被创建出来。在语言层面上,创建对象通常(例外:克隆、反序列化)仅仅是一个 new关键字而已,而在虚拟机中,对象(本文中讨论的对象限于普通Java对象,不包括数组和Class对象等)的创建又是怎样一个过程呢?
虚拟机遇到一条new指令时,
1、首先jvm要检查类A是否已经被加载到了内存,即类的符号引用是否已经在常量池中,并且检查这个符号引用代表的类是否已被加载、解析和初始化过的。如果还没有,需要先触发类的加载、解析、初始化。然后在堆上创建对象。
2、为新生对象分配内存。
对象所需内存的大小在类加载完成后便可完全确定,为对象分配空间的任务具体便等同于一块确定大小 的内存从Java堆中划分出来,怎么划呢?假设Java堆中内存是绝对规整的,所有用过的内存都被放在一边,空闲的内存被放在另一边,中间放着一个指针作 为分界点的指示器,那所分配内存就仅仅是把那个指针向空闲空间那边挪动一段与对象大小相等的距离,这种分配方式称为“指针碰撞”(Bump The Pointer)。如果Java堆中的内存并不是规整的,已被使用的内存和空闲的内存相互交错,那就没有办法简单的进行指针碰撞了,虚拟机就必须维护一个列表,记录上哪些内存块是可用的,在分配的时候从列表中找到一块足够大的空间划分给对象实例,并更新列表上的记录,这种分配方式称为“空闲列表”(Free List)。选择哪种分配方式由Java堆是否规整决定,而Java堆是否规整又由所采用的垃圾收集器是否带有压缩整理功能决定。因 此在使用Serial、ParNew等带Compact过程的收集器时,系统采用的分配算法是指针碰撞,而使用CMS这种基于Mark-Sweep算法的 收集器时(说明一下,CMS收集器可以通过UseCMSCompactAtFullCollection或 CMSFullGCsBeforeCompaction来整理内存),就通常采用空闲列表。
除如何划分可用空间之外,还有另外一个需要考虑的问题是对象创建在虚拟机中是非常频繁的行为,即使是仅仅修改一个指针所指向的位置,在并发情况下也并不是 线程安全的,可能出现正在给对象A分配内存,指针还没来得及修改,对象B又同时使用了原来的指针来分配内存。解决这个问题有两个方案,一种是对分配内存空 间的动作进行同步——实际上虚拟机是采用CAS配上失败重试的方式保证更新操作的原子性;另外一种是把内存分配的动作按照线程划分在不同的空间之中进行, 即每个线程在Java堆中预先分配一小块内存,称为本地线程分配缓冲区,(TLAB ,Thread Local Allocation Buffer),哪个线程要分配内存,就在哪个线程的TLAB上分配,只有TLAB用完,分配新的TLAB时才需要同步锁定。虚拟机是否使用TLAB,可以通过-XX:+/-UseTLAB参数来设定。
3. 完成实例数据部分的初始化工作(初始化为0值)
内存分配完成之后,虚拟机需要将分配到的内存空间都初始化为零值(不包括对象头),如果使用TLAB的话,这一个工作也可以提前至TLAB分配时进行。这 步操作保证了对象的实例字段在Java代码中可以不赋初始值就直接使用,程序能访问到这些字段的数据类型所对应的零值。
4、 完成对象头的填充:如对象自身的运行时数据、类型指针等。
接下来,虚拟机要对对象进行必要的设置,例如这个对象是哪个类的实例、如何才能找到类的元数据信息、对象的哈希码、对象的GC分代年龄等信息。这些信息存放在对象的对象头(Object Header)之中。根据虚拟机当前的运行状态的不同,如是否启用偏向锁等,对象头会有不同的设置方式。
在上面工作都完成之后,在虚拟机的视角来看,一个新的对象已经产生了。但是在Java程序的视角看来,初始化才正式开始,开始调用<init>方法完成初始复制和构造函数,所有的字段都为零值。因此一般来说(由字节码中是否跟随有invokespecial指令所决定),new指令之后会接着就是执 行<init>方法,把对象按照程序员的意愿进行初始化,这样一个真正可用的对象才算完全创建出来。
下面代码是HotSpot虚拟机bytecodeInterpreter.cpp中的代码片段(这个解释器实现很少机会实际使用,大部分平台上都使用模板 解释器;当代码通过JIT编译器执行时差异就更大了。不过这段代码用于了解HotSpot的运作过程是没有什么问题的)。
// 确保常量池中存放的是已解释的类
if (!constants->tag_at(index).is_unresolved_klass()) {
// 断言确保是klassOop和instanceKlassOop(这部分下一节介绍)
oop entry = (klassOop) *constants->obj_at_addr(index);
assert(entry->is_klass(), "Should be resolved klass");
klassOop k_entry = (klassOop) entry;
assert(k_entry->klass_part()->oop_is_instance(), "Should be instanceKlass");
instanceKlass* ik = (instanceKlass*) k_entry->klass_part();
// 确保对象所属类型已经经过初始化阶段
if ( ik->is_initialized() && ik->can_be_fastpath_allocated() ) {
// 取对象长度
size_t obj_size = ik->size_helper();
oop result = NULL;
// 记录是否需要将对象所有字段置零值
bool need_zero = !ZeroTLAB;
// 是否在TLAB中分配对象
if (UseTLAB) {
result = (oop) THREAD->tlab().allocate(obj_size);
}
if (result == NULL) {
need_zero = true;
// 直接在eden中分配对象
retry:
HeapWord* compare_to = *Universe::heap()->top_addr();
HeapWord* new_top = compare_to + obj_size;
// cmpxchg是x86中的CAS指令,这里是一个C++方法,通过CAS方式分配空间,并发失败的话,转到retry中重试直至成功分配为止
if (new_top <= *Universe::heap()->end_addr()) {
if (Atomic::cmpxchg_ptr(new_top, Universe::heap()->top_addr(), compare_to) != compare_to) {
goto retry;
}
result = (oop) compare_to;
}
}
if (result != NULL) {
// 如果需要,为对象初始化零值
if (need_zero ) {
HeapWord* to_zero = (HeapWord*) result + sizeof(oopDesc) / oopSize;
obj_size -= sizeof(oopDesc) / oopSize;
if (obj_size > 0 ) {
memset(to_zero, 0, obj_size * HeapWordSize);
}
}
// 根据是否启用偏向锁,设置对象头信息
if (UseBiasedLocking) {
result->set_mark(ik->prototype_header());
} else {
result->set_mark(markOopDesc::prototype());
}
result->set_klass_gap(0);
result->set_klass(k_entry);
// 将对象引用入栈,继续执行下一条指令
SET_STACK_OBJECT(result, 0);
UPDATE_PC_AND_TOS_AND_CONTINUE(3, 1);
}
}
}
三、对象的访问定位
建立对象是为了使用对象,我们的Java程序需要通过栈上的reference数据来操作堆上的具体对象。由于reference类型在Java虚拟机规范里面只规定了是一个指向对象的引用,并没有定义这个引用应该通过什么种方式去定位、访问到堆中的对象的具体位置,对象访问方式也是取决于虚拟机实现而定的。主流的访问方式有使用句柄和直接指针两种。
如果使用句柄访问的话,Java堆中将会划分出一块内存来作为句柄池,reference中存储的就是对象的句柄地址,而句柄中包含了对象实例数据与类型数据的具体各自的地址信息。如图1所示。
[图片上传失败...(image-54ca4f-1548471344141)]
图1 通过句柄访问对象
如果使用直接指针访问的话,Java堆对象的布局中就必须考虑如何放置访问类型数据的相关信息,reference中存储的直接就是对象地址,如图2所示。
[图片上传失败...(image-31205a-1548471344141)]
图2 通过直接指针访问对象
这两种对象访问方式各有优势,使用句柄来访问的最大好处就是reference中存储的是稳定句柄地址,在对象被移动(垃圾收集时移动对象是非常普遍的行为)时只会改变句柄中的实例数据指针,而reference本身不需要被修改。
使用直接指针来访问最大的好处就是速度更快,它节省了一次指针定位的时间开销,由于对象访问的在Java中非常频繁,因此这类开销积小成多也是一项非常可观的执行成本。从上一部分讲解的对象内存布局可以看出,就虚拟机HotSpot而言,它是使用第二种方式进行对象访问,但在整个软件开发的范围来看,各种语言、框架中使用句柄来访问的情况也十分常见。
四、示例
在Hotspot JVM中,32位机器下,Integer对象的大小是int的几倍?
我们都知道在Java语言规范已经规定了int的大小是4个字节,那么Integer对象的大小是多少呢?要知道一个对象的大小,那么必须需要知道对象在虚拟机中的结构是怎样的,根据上面的图,那么我们可以得出Integer的对象的结构如下:
Integer只有一个int类型的成员变量value,所以其对象实际数据部分的大小是4个字节,然后再在后面填充4个字节达到8字节的对齐,所以可以得出Integer对象的大小是16个字节。
因此,我们可以得出Integer对象的大小是原生的int类型的4倍。
关于对象的内存结构,需要注意数组的内存结构和普通对象的内存结构稍微不同,因为数据有一个长度length字段,所以在对象头后面还多了一个int类型的length字段,占4个字节,接下来才是数组中的数据,如下图:
2.2 synchronized的happens-before关系
Synchronized的happens-before规则,即监视器锁规则:对同一个监视器的解锁,happens-before对该监视器的加锁。继续来看代码:
public class MonitorDemo {
private int a = 0;
public synchronized void writer() { // 1
a++; // 2
} // 3
public synchronized void reader() { // 4
int i = a; // 5
} // 6
}
该代码的happens-before关系如图所示:
在图中每一个箭头连接的两个节点就代表之间的happens-before关系,黑色的是通过程序顺序规则推导出来,红色的为监视器锁规则推导而出:线程A释放锁happens-before线程B加锁,蓝色的则是通过程序顺序规则和监视器锁规则推测出来happens-befor关系,通过传递性规则进一步推导的happens-before关系。现在我们来重点关注2 happens-before 5,通过这个关系我们可以得出什么?
根据happens-before的定义中的一条:如果A happens-before B,则A的执行结果对B可见,并且A的执行顺序先于B。线程A先对共享变量A进行加一,由2 happens-before 5关系可知线程A的执行结果对线程B可见即线程B所读取到的a的值为1。
2.3 锁获取和锁释放的内存语义
在上一篇文章提到过JMM核心为两个部分:happens-before规则以及内存抽象模型。我们分析完Synchronized的happens-before关系后,还是不太完整的,我们接下来看看基于java内存抽象模型的Synchronized的内存语义。
废话不多说依旧先上图。
从上图可以看出,线程A会首先先从主内存中读取共享变量a=0的值然后将该变量拷贝到自己的本地内存,进行加一操作后,再将该值刷新到主内存,整个过程即为线程A 加锁-->执行临界区代码-->释放锁相对应的内存语义。
线程B获取锁的时候同样会从主内存中共享变量a的值,这个时候就是最新的值1,然后将该值拷贝到线程B的工作内存中去,释放锁的时候同样会重写到主内存中。
从整体上来看,线程A的执行结果(a=1)对线程B是可见的,实现原理为:释放锁的时候会将值刷新到主内存中,其他线程获取锁时会强制从主内存中获取最新的值。另外也验证了2 happens-before 5,2的执行结果对5是可见的。
从横向来看,这就像线程A通过主内存中的共享变量和线程B进行通信,A 告诉 B 我们俩的共享数据现在为1啦,这种线程间的通信机制正好吻合java的内存模型正好是共享内存的并发模型结构。
3. synchronized优化
通过上面的讨论现在我们对Synchronized应该有所印象了,它最大的特征就是在同一时刻只有一个线程能够获得对象的监视器(monitor),从而进入到同步代码块或者同步方法之中,即表现为互斥性(排它性)。这种方式肯定效率低下,每次只能通过一个线程,既然每次只能通过一个,这种形式不能改变的话,那么我们能不能让每次通过的速度变快一点了。打个比方,去收银台付款,之前的方式是,大家都去排队,然后去纸币付款收银员找零,有的时候付款的时候在包里拿出钱包再去拿出钱,这个过程是比较耗时的,然后,支付宝解放了大家去钱包找钱的过程,现在只需要扫描下就可以完成付款了,也省去了收银员跟你找零的时间的了。同样是需要排队,但整个付款的时间大大缩短,是不是整体的效率变高速率变快了?这种优化方式同样可以引申到锁优化上,缩短获取锁的时间。
在聊到锁的优化也就是锁的几种状态前,有两个知识点需要先关注:(1)CAS操作 (2)Java对象头,这是理解下面知识的前提条件。
3.1 CAS操作
3.1.1 什么是CAS?
使用锁时,线程获取锁是一种悲观锁策略,即假设每一次执行临界区代码都会产生冲突,所以当前线程获取到锁的时候同时也会阻塞其他线程获取该锁。而CAS操作(又称为无锁操作)是一种乐观锁策略,它假设所有线程访问共享资源的时候不会出现冲突,既然不会出现冲突自然而然就不会阻塞其他线程的操作。因此,线程就不会出现阻塞停顿的状态。那么,如果出现冲突了怎么办?无锁操作是使用CAS(compare and swap)又叫做比较交换来鉴别线程是否出现冲突,出现冲突就重试当前操作直到没有冲突为止。
3.1.2 CAS的操作过程
CAS比较交换的过程可以通俗的理解为CAS(V,O,N),包含三个值分别为:V 内存地址存放的实际值;O 预期的值(旧值);N 更新的新值。当V和O相同时,也就是说旧值和内存中实际的值相同表明该值没有被其他线程更改过,即该旧值O就是目前来说最新的值了,自然而然可以将新值N赋值给V。反之,V和O不相同,表明该值已经被其他线程改过了则该旧值O不是最新版本的值了,所以不能将新值N赋给V,返回V即可。当多个线程使用CAS操作一个变量是,只有一个线程会成功,并成功更新,其余会失败。失败的线程会重新尝试,当然也可以选择挂起线程
CAS的实现需要硬件指令集的支撑,在JDK1.5后虚拟机才可以使用处理器提供的CMPXCHG指令实现。
Synchronized VS CAS
元老级的Synchronized(未优化前)最主要的问题是:在存在线程竞争的情况下会出现线程阻塞和唤醒锁带来的性能问题,因为这是一种互斥同步(阻塞同步)。而CAS并不是武断的线程挂起,当CAS操作失败后会进行一定的尝试,而非进行耗时的挂起唤醒的操作,因此也叫做非阻塞同步。这是两者主要的区别。
3.1.3 CAS的应用场景
在J.U.C包中利用CAS实现类有很多,可以说是支撑起整个concurrency包的实现,在Lock实现中会有CAS改变state变量,在atomic包中的实现类也几乎都是用CAS实现。
3.1.4 CAS的问题
1. ABA问题
因为CAS会检查旧值有没有变化,这里存在这样一个有意思的问题。比如一个旧值A变为了成B,然后再变成A,刚好在做CAS时检查发现旧值并没有变化依然为A,但是实际上的确发生了变化。解决方案可以沿袭数据库中常用的乐观锁方式,添加一个版本号可以解决。原来的变化路径A->B->A就变成了1A->2B->3C。java这么优秀的语言,当然在java 1.5后的atomic包中提供了AtomicStampedReference来解决ABA问题,解决思路就是这样的。
2. 自旋时间过长
使用CAS时非阻塞同步,也就是说不会将线程挂起,会自旋(无非就是一个死循环)进行下一次尝试,如果这里自旋时间过长对性能是很大的消耗。如果JVM能支持处理器提供的pause指令,那么在效率上会有一定的提升。
3. 只能保证一个共享变量的原子操作
当对一个共享变量执行操作时CAS能保证其原子性,如果对多个共享变量进行操作,CAS就不能保证其原子性。有一个解决方案是利用对象整合多个共享变量,即一个类中的成员变量就是这几个共享变量。然后将这个对象做CAS操作就可以保证其原子性。atomic中提供了AtomicReference来保证引用对象之间的原子性。
3.2 Java对象头
在同步的时候是获取对象的monitor,即获取到对象的锁。那么对象的锁怎么理解?无非就是类似对对象的一个标志,那么这个标志就是存放在Java对象的对象头。Java对象头里的Mark Word里默认的存放的对象的Hashcode,分代年龄和锁标记位。32位JVM Mark Word默认存储结构为:
如图在Mark Word会默认存放hasdcode,年龄值以及锁标志位等信息。
Java SE 1.6中,锁一共有4种状态,级别从低到高依次是:无锁状态、偏向锁状态、轻量级锁状态和重量级锁状态,这几个状态会随着竞争情况逐渐升级。锁可以升级但不能降级,意味着偏向锁升级成轻量级锁后不能降级成偏向锁。这种锁升级却不能降级的策略,目的是为了提高获得锁和释放锁的效率。对象的MarkWord变化为下图:
3.2 偏向锁
HotSpot的作者经过研究发现,大多数情况下,锁不仅不存在多线程竞争,而且总是由同一线程多次获得,为了让线程获得锁的代价更低而引入了偏向锁。
偏向锁的获取
当一个线程访问同步块并获取锁时,会在对象头和栈帧中的锁记录里存储锁偏向的线程ID,以后该线程在进入和退出同步块时不需要进行CAS操作来加锁和解锁,只需简单地测试一下对象头的Mark Word里是否存储着指向当前线程的偏向锁。如果测试成功,表示线程已经获得了锁。如果测试失败,则需要再测试一下Mark Word中偏向锁的标识是否设置成1(表示当前是偏向锁):如果没有设置,则使用CAS竞争锁;如果设置了,则尝试使用CAS将对象头的偏向锁指向当前线程
偏向锁的撤销
偏向锁使用了一种等到竞争出现才释放锁的机制,所以当其他线程尝试竞争偏向锁时,持有偏向锁的线程才会释放锁。
如图,偏向锁的撤销,需要等待全局安全点(在这个时间点上没有正在执行的字节码)。它会首先暂停拥有偏向锁的线程,然后检查持有偏向锁的线程是否活着,如果线程不处于活动状态,则将对象头设置成无锁状态;如果线程仍然活着,拥有偏向锁的栈会被执行,遍历偏向对象的锁记录,栈中的锁记录和对象头的Mark Word要么重新偏向于其他线程,要么恢复到无锁或者标记对象不适合作为偏向锁,最后唤醒暂停的线程。
下图线程1展示了偏向锁获取的过程,线程2展示了偏向锁撤销的过程。
如何关闭偏向锁
偏向锁在Java 6和Java 7里是默认启用的,但是它在应用程序启动几秒钟之后才激活,如有必要可以使用JVM参数来关闭延迟:-XX:BiasedLockingStartupDelay=0。如果你确定应用程序里所有的锁通常情况下处于竞争状态,可以通过JVM参数关闭偏向锁:-XX:-UseBiasedLocking=false,那么程序默认会进入轻量级锁状态
3.3 轻量级锁
加锁
线程在执行同步块之前,JVM会先在当前线程的栈桢中创建用于存储锁记录的空间,并将对象头中的Mark Word复制到锁记录中,官方称为Displaced Mark Word。然后线程尝试使用CAS将对象头中的Mark Word替换为指向锁记录的指针。如果成功,当前线程获得锁,如果失败,表示其他线程竞争锁,当前线程便尝试使用自旋来获取锁
解锁
轻量级解锁时,会使用原子的CAS操作将Displaced Mark Word替换回到对象头,如果成功,则表示没有竞争发生。如果失败,表示当前锁存在竞争,锁就会膨胀成重量级锁。下图是两个线程同时争夺锁,导致锁膨胀的流程图。
因为自旋会消耗CPU,为了避免无用的自旋(比如获得锁的线程被阻塞住了),一旦锁升级成重量级锁,就不会再恢复到轻量级锁状态。当锁处于这个状态下,其他线程试图获取锁时,都会被阻塞住,当持有锁的线程释放锁之后会唤醒这些线程,被唤醒的线程就会进行新一轮的夺锁之争。
3.5 各种锁的比较
4. 一个例子
经过上面的理解,我们现在应该知道了该怎样解决了。更正后的代码为:
public class SynchronizedDemo implements Runnable {
private static int count = 0;
public static void main(String[] args) {
for (int i = 0; i < 10; i++) {
Thread thread = new Thread(new SynchronizedDemo());
thread.start();
}
try {
Thread.sleep(500);
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println("result: " + count);
}
@Override
public void run() {
synchronized (SynchronizedDemo.class) {
for (int i = 0; i < 1000000; i++)
count++;
}
}
}
开启十个线程,每个线程在原值上累加1000000次,最终正确的结果为10X1000000=10000000,这里能够计算出正确的结果是因为在做累加操作时使用了同步代码块,这样就能保证每个线程所获得共享变量的值都是当前最新的值,如果不使用同步的话,就可能会出现A线程累加后,而B线程做累加操作有可能是使用原来的就值,即“脏值”。这样,就导致最终的计算结果不是正确的。而使用Syncnized就可能保证内存可见性,保证每个线程都是操作的最新值。