在netty的池化ByteBuf分配中,包含ByteBuf对象的池化和真实内存(array或者DirectByteBuffer)的池化。本文内容为对象池的细节,真实内存的池化参见:netty-内存管理。
实际上Recycler不仅可以用于ByteBuf对象的池化,他是一个通用的对象池化技术,我们可以直接使用Recycler实现自身系统对象的池化。
1. 对象池化的作用
在netty中ByteBuf的创建是个非常频繁的过程,使用对象池可以起到对象可以复用,减少gc频率的作用。
2. Recycler的关键技术点
-
多线程竞争下的对象分配和释放(怎么减小多线程竞争)
每个线程都有自己的对象池,分配时从自己的对象池中获得一个对象。其他线程release对象时,把对象归还到原来自己的池子中去(分配线程的池子)。
大量使用了ThreadLocal,每个线程都有自己的stack和weakorderqueue,做到线程封闭,有力减小竞争。 -
对象的分配
2.1 先从stack中分配,如果stack有,则直接stack.pop获得对象
2.2 如果stack中没有,从WeakOrderQueue中一次移取多个对象到stack中(每次会尽可能scavenge整个head Link到stack中),最后stack.pop获得对象。 -
对象的release
3.1 如果release线程就是对象的分配线程,直接入栈
3.2 如果release线程和对象的分配线程不是同一个线程,则归还到分配线程的WeakOrderQueue中。release线程维护的数据结构为:ThreadLocal<Map<Stack,WeakOrderQueue>>
3. 未解疑问
- 为什么需要WeakOrderQueue?
WeakOrderQueue的存在是用于非分配对象的线程在release对象时将对象归还到分配线程的对象池中,如果直接把对象归还到release对象的线程中,也就是release线程直接stack.push岂不是很高效?
INITIAL_CAPACITY = min(DEFAULT_MAX_CAPACITY_PER_THREAD, 256);
maxCapacity=32768
4. Recycler核心结构
Recycler关联了4个核心类:
- DefaultHandle:对象的包装类,在Recycler中缓存的对象都会包装成DefaultHandle类。
- Stack:存储本线程回收的对象。对象的获取和回收对应Stack的pop和push,即获取对象时从Stack中pop出1个DefaultHandle,回收对象时将对象包装成DefaultHandle push到Stack中。Stack会与线程绑定,即每个用到Recycler的线程都会拥有1个Stack,在该线程中获取对象都是在该线程的Stack中pop出一个可用对象。
stack底层以数组作为存储结构,初始大小为256,最大大小为32768。 - WeakOrderQueue:存储其它线程回收到分配线程的对象,当某个线程从Stack中获取不到对象时会从WeakOrderQueue中获取对象。
3.1 从分配线程的角度来看,每个分配线程的Stack拥有1个WeakOrderQueue链表,每个WeakOrderQueue元素维持了对应release线程归还的对象。每个分配线程的WeakOrderQueue链表的对象池子中的对象数量不能超过availableSharedCapacity = new AtomicInteger(max(maxCapacity / maxSharedCapacityFactor, LINK_CAPACITY));
,该值默认为16K=16384。
3.2 从release角度看,主要的数据结构为:
Map<Stack<?>, WeakOrderQueue>维持了release线程向每个分配线程归还对象的数据结构,Map的大小不超过MAX_DELAYED_QUEUES_PER_THREAD = max(0, SystemPropertyUtil.getInt("io.netty.recycler.maxDelayedQueuesPerThread", // We use the same value as default EventLoop number NettyRuntime.availableProcessors() * 2));
。
也就是release线程默认最多能向核数*2个分配线程归还对象。 - Link: WeakOrderQueue中包含1个Link链表,回收对象存储在链表某个Link节点里,当Link节点存储的回收对象满了时会新建1个Link放在Link链表尾。
private static final class Link extends AtomicInteger
每个Link节点默认能存储16个元素,通过继承AtomicInteger是为了解决分配线程通过WeakOrderQueue和回收线程归还对象时的线程竞争。
整个Recycler回收对象存储结构如下图所示:
5. Recycler实现细节
本节部分内容摘录自[NettyRecycler(https://www.jianshu.com/p/4eab8450560c)。
Recycler用来实现对象池,其中对应堆内存和直接内存的池化实现分别是PooledHeapByteBuf和PooledDirectByteBuf。Recycler主要提供了3个方法:
- get():获取一个对象。
- recycle(T, Handle):回收一个对象,T为对象泛型。
- newObject(Handle):当没有可用对象时创建对象的实现方法。
Recycler的UML图如下:
下面分析下源码,首先看下Recycler.recycle(T, Handle)方法,用于回收1个对象:
public final boolean recycle(T o, Handle handle) {
if (handle == NOOP_HANDLE) {
return false;
}
DefaultHandle h = (DefaultHandle) handle;
if (h.stack.parent != this) {
return false;
}
if (o != h.value) {
throw new IllegalArgumentException("o does not belong to handle");
}
h.recycle();
return true;
}
回收1个对象会调用该对象DefaultHandle.recycle()方法,如下:
public void recycle() {
stack.push(this);
}
回收1个对象(DefaultHandle)就是把该对象push到stack中。
void push(DefaultHandle item) {
Thread currentThread = Thread.currentThread();
if (thread == currentThread) {
// The current Thread is the thread that belongs to the Stack, we can try to push the object now.
/**
* 如果该stack就是本线程的stack,那么直接把DefaultHandle放到该stack的数组里
*/
pushNow(item);
} else {
// The current Thread is not the one that belongs to the Stack, we need to signal that the push
// happens later.
/**
* 如果该stack不是本线程的stack,那么把该DefaultHandle放到该stack的WeakOrderQueue中
*/
pushLater(item, currentThread);
}
}
这里分为两种情况,当stack是当前线程对应的stack时,执行pushNow(item)方法,直接把对象放到该stack的DefaultHandle数组中,如下:
/**
* 直接把DefaultHandle放到stack的数组里,如果数组满了那么扩展该数组为当前2倍大小
* @param item
*/
private void pushNow(DefaultHandle item) {
if ((item.recycleId | item.lastRecycledId) != 0) {
throw new IllegalStateException("recycled already");
}
item.recycleId = item.lastRecycledId = OWN_THREAD_ID;
int size = this.size;
if (size >= maxCapacity || dropHandle(item)) {
// Hit the maximum capacity or should drop - drop the possibly youngest object.
return;
}
if (size == elements.length) {
elements = Arrays.copyOf(elements, min(size << 1, maxCapacity));
}
elements[size] = item;
this.size = size + 1;
}
当stack是其它线程的stack时,执行pushLater(item, currentThread)方法,将对象放到WeakOrderQueue中,如下:
private void pushLater(DefaultHandle item, Thread thread) {
/**
* Recycler有1个stack->WeakOrderQueue映射,每个stack会映射到1个WeakOrderQueue,这个WeakOrderQueue是该stack关联的其它线程WeakOrderQueue链表的head WeakOrderQueue。
* 当其它线程回收对象到该stack时会创建1个WeakOrderQueue中并加到stack的WeakOrderQueue链表中。
*/
Map<Stack<?>, WeakOrderQueue> delayedRecycled = DELAYED_RECYCLED.get();
WeakOrderQueue queue = delayedRecycled.get(this);
if (queue == null) {
/**
* 如果delayedRecycled满了那么将1个伪造的WeakOrderQueue(DUMMY)放到delayedRecycled中,并丢弃该对象(DefaultHandle)
*/
if (delayedRecycled.size() >= maxDelayedQueues) {
// Add a dummy queue so we know we should drop the object
delayedRecycled.put(this, WeakOrderQueue.DUMMY);
return;
}
// Check if we already reached the maximum number of delayed queues and if we can allocate at all.
/**
* 创建1个WeakOrderQueue
*/
if ((queue = WeakOrderQueue.allocate(this, thread)) == null) {
// drop object
return;
}
delayedRecycled.put(this, queue);
} else if (queue == WeakOrderQueue.DUMMY) {
// drop object
return;
}
/**
* 将对象放入到该stack对应的WeakOrderQueue中
*/
queue.add(item);
}
static WeakOrderQueue allocate(Stack<?> stack, Thread thread) {
// We allocated a Link so reserve the space
/**
* 如果该stack的可用共享空间还能再容下1个WeakOrderQueue,那么创建1个WeakOrderQueue,否则返回null
*/
return reserveSpace(stack.availableSharedCapacity, LINK_CAPACITY)
? new WeakOrderQueue(stack, thread) : null;
}
WeakOrderQueue的构造函数如下,WeakOrderQueue实现了多线程环境下回收对象的机制,当由其它线程回收对象到stack时会为该stack创建1个WeakOrderQueue,这些由其它线程创建的WeakOrderQueue会在该stack中按链表形式串联起来,每次创建1个WeakOrderQueue会把该WeakOrderQueue作为该stack的head WeakOrderQueue:
private WeakOrderQueue(Stack<?> stack, Thread thread) {
head = tail = new Link();
owner = new WeakReference<Thread>(thread);
/**
* 每次创建WeakOrderQueue时会更新WeakOrderQueue所属的stack的head为当前WeakOrderQueue, 当前WeakOrderQueue的next为stack的之前head,
* 这样把该stack的WeakOrderQueue通过链表串起来了,当下次stack中没有可用对象需要从WeakOrderQueue中转移对象时从WeakOrderQueue链表的head进行scavenge转移到stack的对DefaultHandle数组。
*/
synchronized (stack) {
next = stack.head;
stack.head = this;
}
availableSharedCapacity = stack.availableSharedCapacity;
}
下面再看Recycler.get()方法:
public final T get() {
if (maxCapacity == 0) {
return newObject(NOOP_HANDLE);
}
Stack<T> stack = threadLocal.get();
DefaultHandle handle = stack.pop();
if (handle == null) {
handle = stack.newHandle();
handle.value = newObject(handle);
}
return (T) handle.value;
}
取出该线程对应的stack,从stack中pop出1个DefaultHandle,返回该DefaultHandle的真正对象。
下面看stack.pop()方法:
DefaultHandle pop() {
int size = this.size;
if (size == 0) {
if (!scavenge()) {
return null;
}
size = this.size;
}
size --;
DefaultHandle ret = elements[size];
elements[size] = null;
if (ret.lastRecycledId != ret.recycleId) {
throw new IllegalStateException("recycled multiple times");
}
ret.recycleId = 0;
ret.lastRecycledId = 0;
this.size = size;
return ret;
}
如果该stack的DefaultHandle数组中还有对象可用,那么从该DefaultHandle数组中取出1个可用对象返回,如果该DefaultHandle数组没有可用的对象了,那么执行scavenge()方法,将head WeakOrderQueue中的head Link中的DefaultHandle数组转移到stack的DefaultHandle数组,scavenge方法如下:
boolean scavenge() {
// continue an existing scavenge, if any
if (scavengeSome()) {
return true;
}
// reset our scavenge cursor
prev = null;
cursor = head;
return false;
}
具体执行了scavengeSome()方法,清理WeakOrderQueue中部分DefaultHandle到stack,每次尽可能清理head WeakOrderQueue的head Link的全部DefaultHandle,如下:
boolean scavengeSome() {
WeakOrderQueue cursor = this.cursor;
if (cursor == null) {
cursor = head;
if (cursor == null) {
return false;
}
}
boolean success = false;
WeakOrderQueue prev = this.prev;
do {
/**
* 将当前WeakOrderQueue的head Link的DefaultHandle数组转移到stack的DefaultHandle数组中
*/
if (cursor.transfer(this)) {
success = true;
break;
}
WeakOrderQueue next = cursor.next;
if (cursor.owner.get() == null) {
if (cursor.hasFinalData()) {
for (;;) {
if (cursor.transfer(this)) {
success = true;
} else {
break;
}
}
}
if (prev != null) {
prev.next = next;
}
} else {
prev = cursor;
}
cursor = next;
} while (cursor != null && !success);
this.prev = prev;
this.cursor = cursor;
return success;
}
WeakOrderQueue.transfer()方法如下,将WeakOrderQueue的head Link中的DefaultHandle数组迁移到stack中:
boolean transfer(Stack<?> dst) {
Link head = this.head;
if (head == null) {
return false;
}
/**
* 如果head Link的readIndex到达了Link的容量LINK_CAPACITY,说明该Link已经被scavengge完了。
* 这时需要把下一个Link作为新的head Link。
*/
if (head.readIndex == LINK_CAPACITY) {
if (head.next == null) {
return false;
}
this.head = head = head.next;
}
final int srcStart = head.readIndex;
/**
* head Link的回收对象数组的最大位置
*/
int srcEnd = head.get();
/**
* head Link可以scavenge的DefaultHandle的数量
*/
final int srcSize = srcEnd - srcStart;
if (srcSize == 0) {
return false;
}
final int dstSize = dst.size;
/**
* 每次会尽可能scavenge整个head Link,如果head Link的DefaultHandle数组能全部迁移到stack中,stack的DefaultHandle数组预期容量
*/
final int expectedCapacity = dstSize + srcSize;
/**
* 如果预期容量大于stack的DefaultHandle数组最大长度,说明本次无法将head Link的DefaultHandle数组全部迁移到stack中
*/
if (expectedCapacity > dst.elements.length) {
final int actualCapacity = dst.increaseCapacity(expectedCapacity);
srcEnd = min(srcStart + actualCapacity - dstSize, srcEnd);
}
if (srcStart != srcEnd) {
/**
* head Link的DefaultHandle数组
*/
final DefaultHandle[] srcElems = head.elements;
/**
* stack的DefaultHandle数组
*/
final DefaultHandle[] dstElems = dst.elements;
int newDstSize = dstSize;
/**
* 迁移head Link的DefaultHandle数组到stack的DefaultHandle数组
*/
for (int i = srcStart; i < srcEnd; i++) {
DefaultHandle element = srcElems[i];
if (element.recycleId == 0) {
element.recycleId = element.lastRecycledId;
} else if (element.recycleId != element.lastRecycledId) {
throw new IllegalStateException("recycled already");
}
srcElems[i] = null;
if (dst.dropHandle(element)) {
// Drop the object.
continue;
}
element.stack = dst;
dstElems[newDstSize ++] = element;
}
/**
* 当head节点的对象全都转移给stack后,取head下一个节点作为head,下次转移的时候再从新的head转移回收的对象
*/
if (srcEnd == LINK_CAPACITY && head.next != null) {
// Add capacity back as the Link is GCed.
reclaimSpace(LINK_CAPACITY);
this.head = head.next;
}
/**
* 迁移完成后更新原始head Link的readIndex
*/
head.readIndex = srcEnd;
if (dst.size == newDstSize) {
return false;
}
dst.size = newDstSize;
return true;
} else {
// The destination stack is full already.
return false;
}
}