归一化和标准化,正则化

https://blog.csdn.net/cindy407/article/details/92002448


为什么要归一化/标准化?

1、去除量纲的影响,将有量纲的数值变成无量纲的纯数值;(归一化)
2、解决各特征之间数值差异过大的问题,比如一个向量(uv:10000, rate:0.03,money: 20),如果要与其它向量一起计算欧氏距离或者余弦相似度时,会向uv倾斜非常严重,导致其余2个特征对模型的贡献度非常低
3、提升训练的速度,防止过拟合

一、Z-score标准化

# 自己手写
x = (x-x.mean())/x.std()
print(x.mean(),x.std())
print(x[:3])

#调用库
from sklearn import preprocessing
t= preprocessing.StandardScaler().fit(x)
x=t.transform(x)
print(x.mean(),x.std())
print(x[:3])

二、最大最小归一化

如果有一次期末考试题特别难,大家都在59分以下,学校觉得此成绩不太妥当,想进行整体提升,但是怎么提能保证公平性呢?

最大最小化就出场了:最终分数 = (原始分数-最小分数)/(最大分数-最小分数)*100

## 自己手写
#[0,1]
x = (x-x.min())/(x.max()-x.min())
print(x.max(),x.min())
print(x[:3])

#[-1,1]
x = (x-x.mean())/(x.max()-x.min())
print(x.max(),x.min())
print(x[:3])

# 调库
from sklearn import preprocessing
t= preprocessing.MinMaxScaler().fit(x)
x=t.transform(x)
print(x.max(),x.min())
print(x[:3])

三、正则化

在训练数据不够多时,常常会导致过拟合,正则化主是防止过拟合的一种方法,常用的就L1和L2正则化

① L1正则化:将每一个样本的各向量绝对值之和作为范数,再用每个向量去除了这个范数,就得到这个样本L1正则化后的向量;
② L2正则化:将每一个样本的向量先平方和再开方作为范数,再相除

from sklearn import preprocessing
t= preprocessing.Normalizer().fit(x)
x=t.transform(x)
print(x[:3]) 
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,732评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,496评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,264评论 0 338
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,807评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,806评论 5 368
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,675评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,029评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,683评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 41,704评论 1 299
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,666评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,773评论 1 332
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,413评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,016评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,978评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,204评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,083评论 2 350
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,503评论 2 343