三种基本背包问题

一、0/1背包问题

问题描述:有n件物品和容量为m的背包 给出i件物品的重量以及价值 求解让装入背包的物品重量不超过背包容量 且价值最大 。
特点:这是最简单的背包问题,特点是每个物品只有一件供你选择放还是不放。
① 二维解法
设f[i][j]表示前 i 件物品 总重量不超过 j 的最大价值 可得出状态转移方程
f[i][j]=max{f[i-1][j-a[i]]+b[i], f[i-1][j]}

代码: 
for(int i=1;i<=n;i++)
    for(int j=m;j>0;j--){
        if(a[i]<=j)
           f[i][j]=max(f[i-1][j],f[i-1][j-a[i]]+b[i]);
        else f[i][j]=f[i-1][j];
    }

在一些情况下 题目的数据会很大 因此f数组不开到一定程度是没有办法ac。

②一维解法
设f[j]表示重量不超过j公斤的最大价值 可得出状态转移方程
f[j]=max{f[j], f[j−a[i]]+b[i]}

 代码:
 for(int i=1;i<=n;i++){       
      for(int j=m;j>=a[i];j--)
          f[j]=max(f[j], f[j-a[i]]+b[i]);  
    }

二、完全背包问题

问题描述:有n件物品和容量为m的背包 给出i件物品的重量以及价值 求解让装入背包的物品重量不超过背包容量 且价值最大 。
特点:题干看似与01一样 但它的特点是每个物品可以无限选用

设f[j]表示重量不超过j公斤的最大价值 可得出状态转移方程
f[j] = maxj{f[j], f[j−a[i]]+b[i]}

代码:
for(int i=1;i<=n;i++)
    for(int  j = a[i];j <= m;j++){
        f[j] = max(f[j], f[j-a[i]]+b[i]);
    }

三、多重背包问题

问题描述:有n件物品和容量为m的背包 给出i件物品的重量以及价值 还有数量 求解让装入背包的物品重量不超过背包容量 且价值最大 。
特点 :它与完全背包有类似点 特点是每个物品都有了一定的数量

状态转移方程为:
f[j] = max{f[j], f[j−k∗a[i]]+k∗b[i]}

    for(int i=1;i<=n;i++)
    for(int j=m;j>=a[i];j--)
    for(int k=0;k<=c[i];k++){
        if(j-k*a[i]<0)break;
        f[j] = max(f[j], f[j-k*a[i]]+k*b[i]);
    }
实战:

题目一:
链接:https://leetcode-cn.com/problems/coin-change-2/ 力扣(LeetCode)
题目:给定不同面额的硬币和一个总金额。写出函数来计算可以凑成总金额的硬币组合数。假设每一种面额的硬币有无限个。

示例 1:
输入: amount = 5, coins = [1, 2, 5]
输出: 4
解释: 有四种方式可以凑成总金额:
5=5
5=2+2+1
5=2+1+1+1
5=1+1+1+1+1
class Solution {
    public int change(int amount, int[] coins) {
        int []dp=new int[amount+1];
        dp[0]=1;
        for(int coin:coins){
            for(int i=coin;i<=amount;i++){
                dp[i]=dp[i]+dp[i-coin];
            }
        }
       return dp[amount];        
    }
}
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,185评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,445评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,684评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,564评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,681评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,874评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,025评论 3 408
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,761评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,217评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,545评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,694评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,351评论 4 332
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,988评论 3 315
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,778评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,007评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,427评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,580评论 2 349

推荐阅读更多精彩内容