方向导数和梯度

为什么会有方向导数?

在微积分课程中,我们知道函数在某一点的导数(微商)代表了函数在该点的变化率。微分和积分,它们的定义都是建立在极限的基础上。对于单变量函数f(x),它在x0处导数是:当x趋近于x0时,函数的改变量与自变量的改变量的比值的极限,即微商(导数)等于差商的极限



对于单变量函数,自变量只有一个,当x趋近于x0时只能在直线上变动,移动的方向只有左右两方。

然而,对于多变量函数,自变量有多个,表示自变量的点在一个区域内变动,不仅可以移动距离,而且可以按任意的方向来移动同一段距离。因此,函数的变化不仅与移动的距离有关,而且与移动的方向有关。因此,函数的变化率是与方向有关的。这也才有了方向导数的定义,即某一点在某一趋近方向上的导数值。假设给定函数u=u(M),取一点M0=(x0,y0,z0),L是由M0出发的任一半直线,则u在M0点L的方向导数定义为:


梯度

上面有了方向导数的定义,我们进一步来推导方向导数的表示,命L的方向余弦为(cosα,cosβ,cosγ),则L上的M可表示为


于是u对L的方向导数为


注意,在上面的推导中用到了全微分公式.

令向量, L方向可以表示为. 因为l是一个单位向量,所以


这表达了L上的方向向量其实是n在L方向上的投影。当L的方向变化,投影量随之改变,也就代表了不同的方向导数。当L与n同向时,便取得最大值|n|,我们称n为u在该点的梯度。可以看到梯度即是某一点最大的方向导数,沿梯度方向函数有最大的变化率(正向增加,逆向减少)。

另外还可以证明,在某一点的梯度方向,就是过该点的等值面的切平面的法线方向。但需要注意的是,这并不是定理,只是等值函数的法向量的表达式与函数的梯度的表达式一致而已,并非两者之间必然的存在关系。因此,在某一点沿着梯度看去,等值面分布最密,即达到临近等值面的距离最小。

多变量函数的极值

对于单变量函数,若在某点取得极值,则该点的导数为0。同样对于多变量函数,在某点为极大值或极小值只有当在该点的每个偏导数等于0才有可能,也就是说梯度等于0。因此,在多变量函数中,驻点,也就是导数为0的点,指的是每个偏导数等于0,也就是梯度等于0的点。进而,在求极值时,我们可以先找到梯度为0的驻点,在通过定理(查书呗)判断它是否是极值点,极大值还是极小值。


原文参考:http://blog.csdn.net/wolenski/article/details/8030654

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。

推荐阅读更多精彩内容

  • 不同图像灰度不同,边界处一般会有明显的边缘,利用此特征可以分割图像。需要说明的是:边缘和物体间的边界并不等同,边缘...
    大川无敌阅读 13,948评论 0 29
  • 上一篇文章中,线性回归关键问题之一:求解系数的方法梯度下降。梯度下降在数据挖掘很多算法中都有应用, 属于比较基本的...
    wujustin阅读 2,245评论 1 8
  • 考试形式和试卷结构一、试卷满分及考试时间 试卷满分为150分,考试时间为180分钟 二、答题方式 答题方式为闭卷、...
    幻无名阅读 771评论 0 3
  • 在高数中,我们求解一个函数的最小值时,最常用的方法就是求出它的导数为0的那个点,进而判断这个点是否能够取最小值。但...
    耳朵和爪子阅读 3,888评论 2 5
  • 你会挽着我的衣袖 我会把手揣进裤兜走到玉林路的尽头 坐在小酒馆的门口 其实《成都》这首歌出来有一阵子了,可就在上上...
    劈柴捌哥阅读 336评论 2 0