如果出现以下异常
java.io.NotSerializableException: org.apache.kafka.clients.consumer.ConsumerRecord
Serialization stack:
- object not serializable (class: org.apache.kafka.clients.consumer.ConsumerRecord, value: ConsumerRecord(topic = dec_message, partition = 0, leaderEpoch = 0, offset = 0,
- element of array (index: 0)
- array (class [Lorg.apache.kafka.clients.consumer.ConsumerRecord;, size 11)
at org.apache.spark.serializer.SerializationDebugger$.improveException(SerializationDebugger.scala:41)
at org.apache.spark.serializer.JavaSerializationStream.writeObject(JavaSerializer.scala:46)
at org.apache.spark.serializer.JavaSerializerInstance.serialize(JavaSerializer.scala:100)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:456)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
at java.lang.Thread.run(Thread.java:748)
20/05/20 11:29:00 ERROR TaskSetManager: Task 0.0 in stage 0.0 (TID 0) had a not serializable result: org.apache.kafka.clients.consumer.ConsumerRecord
Serialization stack:
- object not serializable (class: org.apache.kafka.clients.consumer.ConsumerRecord,
- element of array (index: 0)
- array (class [Lorg.apache.kafka.clients.consumer.ConsumerRecord;, size 11); not retrying
20/05/20 11:29:00 INFO TaskSchedulerImpl: Removed TaskSet 0.0, whose tasks have all completed, from pool
20/05/20 11:29:00 INFO TaskSchedulerImpl: Cancelling stage 0
20/05/20 11:29:00 INFO TaskSchedulerImpl: Killing all running tasks in stage 0: Stage cancelled
20/05/20 11:29:00 INFO DAGScheduler: ResultStage 0 (print at DemoMain.java:58) failed in 0.419 s due to Job aborted due to stage failure: Task 0.0 in stage 0.0 (TID 0) had a not serializable result: org.apache.kafka.clients.consumer.ConsumerRecord
Serialization stack:
- object not serializable (class: org.apache.kafka.clients.consumer.ConsumerRecord, value: ConsumerRecord(topic = dec_message, partition = 0, leaderEpoch = 0, offset = 0,
- element of array (index: 0)
- array (class [Lorg.apache.kafka.clients.consumer.ConsumerRecord;, size 11)
20/05/20 11:29:00 INFO DAGScheduler: Job 0 failed: print at DemoMain.java:58, took 0.461578 s
20/05/20 11:29:00 INFO JobScheduler: Finished job streaming job 1589945340000 ms.0 from job set of time 1589945340000 ms
20/05/20 11:29:00 ERROR JobScheduler: Error running job streaming job 1589945340000 ms.0
org.apache.spark.SparkException: Job aborted due to stage failure: Task 0.0 in stage 0.0 (TID 0) had a not serializable result: org.apache.kafka.clients.consumer.ConsumerRecord
Serialization stack:
- element of array (index: 0)
- array (class [Lorg.apache.kafka.clients.consumer.ConsumerRecord;, size 11)
at org.apache.spark.scheduler.DAGScheduler.failJobAndIndependentStages(DAGScheduler.scala:1889)
at org.apache.spark.scheduler.DAGScheduler.$anonfun$abortStage$2(DAGScheduler.scala:1877)
at org.apache.spark.scheduler.DAGScheduler.$anonfun$abortStage$2$adapted(DAGScheduler.scala:1876)
at scala.collection.mutable.ResizableArray.foreach(ResizableArray.scala:62)
at scala.collection.mutable.ResizableArray.foreach$(ResizableArray.scala:55)
at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:49)
at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1876)
at org.apache.spark.scheduler.DAGScheduler.$anonfun$handleTaskSetFailed$1(DAGScheduler.scala:926)
at org.apache.spark.scheduler.DAGScheduler.$anonfun$handleTaskSetFailed$1$adapted(DAGScheduler.scala:926)
at scala.Option.foreach(Option.scala:274)
at org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:926)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:2110)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:2059)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:2048)
at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:49)
at org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:737)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:2061)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:2082)
at org.apache.spark.streaming.kafka010.KafkaRDD.take(KafkaRDD.scala:139)
at org.apache.spark.streaming.kafka010.KafkaRDD.take(KafkaRDD.scala:48)
at org.apache.spark.streaming.dstream.DStream.$anonfun$print$3(DStream.scala:735)
at org.apache.spark.streaming.dstream.DStream.$anonfun$print$3$adapted(DStream.scala:734)
at org.apache.spark.streaming.dstream.ForEachDStream.$anonfun$generateJob$2(ForEachDStream.scala:51)
at scala.runtime.java8.JFunction0$mcV$sp.apply(JFunction0$mcV$sp.java:23)
at org.apache.spark.streaming.dstream.DStream.createRDDWithLocalProperties(DStream.scala:416)
at org.apache.spark.streaming.dstream.ForEachDStream.$anonfun$generateJob$1(ForEachDStream.scala:51)
at scala.runtime.java8.JFunction0$mcV$sp.apply(JFunction0$mcV$sp.java:23)
at scala.util.Try$.apply(Try.scala:213)
at org.apache.spark.streaming.scheduler.Job.run(Job.scala:39)
at org.apache.spark.streaming.scheduler.JobScheduler$JobHandler.$anonfun$run$1(JobScheduler.scala:257)
at scala.runtime.java8.JFunction0$mcV$sp.apply(JFunction0$mcV$sp.java:23)
at scala.util.DynamicVariable.withValue(DynamicVariable.scala:62)
at org.apache.spark.streaming.scheduler.JobScheduler$JobHandler.run(JobScheduler.scala:257)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
at java.lang.Thread.run(Thread.java:748)
Exception in thread "main" org.apache.spark.SparkException: Job aborted due to stage failure: Task 0.0 in stage 0.0 (TID 0) had a not serializable result: org.apache.kafka.clients.consumer.ConsumerRecord
Serialization stack:
- object not serializable (class: org.apache.kafka.clients.consumer.ConsumerRecord,
- element of array (index: 0)
- array (class [Lorg.apache.kafka.clients.consumer.ConsumerRecord;, size 11)
at org.apache.spark.scheduler.DAGScheduler.failJobAndIndependentStages(DAGScheduler.scala:1889)
at org.apache.spark.scheduler.DAGScheduler.$anonfun$abortStage$2(DAGScheduler.scala:1877)
at org.apache.spark.scheduler.DAGScheduler.$anonfun$abortStage$2$adapted(DAGScheduler.scala:1876)
at scala.collection.mutable.ResizableArray.foreach(ResizableArray.scala:62)
at scala.collection.mutable.ResizableArray.foreach$(ResizableArray.scala:55)
at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:49)
at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1876)
at org.apache.spark.scheduler.DAGScheduler.$anonfun$handleTaskSetFailed$1(DAGScheduler.scala:926)
at org.apache.spark.scheduler.DAGScheduler.$anonfun$handleTaskSetFailed$1$adapted(DAGScheduler.scala:926)
at scala.Option.foreach(Option.scala:274)
at org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:926)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:2110)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:2059)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:2048)
at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:49)
at org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:737)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:2061)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:2082)
at org.apache.spark.streaming.kafka010.KafkaRDD.take(KafkaRDD.scala:139)
at org.apache.spark.streaming.kafka010.KafkaRDD.take(KafkaRDD.scala:48)
at org.apache.spark.streaming.dstream.DStream.$anonfun$print$3(DStream.scala:735)
at org.apache.spark.streaming.dstream.DStream.$anonfun$print$3$adapted(DStream.scala:734)
at org.apache.spark.streaming.dstream.ForEachDStream.$anonfun$generateJob$2(ForEachDStream.scala:51)
at scala.runtime.java8.JFunction0$mcV$sp.apply(JFunction0$mcV$sp.java:23)
at org.apache.spark.streaming.dstream.DStream.createRDDWithLocalProperties(DStream.scala:416)
at org.apache.spark.streaming.dstream.ForEachDStream.$anonfun$generateJob$1(ForEachDStream.scala:51)
at scala.runtime.java8.JFunction0$mcV$sp.apply(JFunction0$mcV$sp.java:23)
at scala.util.Try$.apply(Try.scala:213)
at org.apache.spark.streaming.scheduler.Job.run(Job.scala:39)
at org.apache.spark.streaming.scheduler.JobScheduler$JobHandler.$anonfun$run$1(JobScheduler.scala:257)
at scala.runtime.java8.JFunction0$mcV$sp.apply(JFunction0$mcV$sp.java:23)
at scala.util.DynamicVariable.withValue(DynamicVariable.scala:62)
at org.apache.spark.streaming.scheduler.JobScheduler$JobHandler.run(JobScheduler.scala:257)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
at java.lang.Thread.run(Thread.java:748)
20/05/20 11:29:00 INFO StreamingContext: Invoking stop(stopGracefully=false) from shutdown hook
解决办法
将ConsumerRecord类注册为使用Kyro序列化
public SparkConf getSparkConf() {
SparkConf sparkConf = new SparkConf()
.setAppName("local_spark_statistics")
.setMaster("local")
.set("spark.serializer","org.apache.spark.serializer.KryoSerializer");
sparkConf.registerKryoClasses((Class<?>[]) Arrays.asList(ConsumerRecord.class).toArray());
return sparkConf;
}
序列化在分布式系统中扮演着重要的角色,优化Spark程序时,首当其冲的就是对序列化方式的优化。Spark为使用者提供两种序列化方式:
Java serialization: 默认的序列化方式。
Kryo serialization: 相较于 Java serialization 的方式,速度更快,空间占用更小,但并不支持所有的序列化格式,同时使用的时候需要注册class。spark-sql中默认使用的是kyro的序列化方式。
一、如果需要多个类都使用Kyro序列化,可以自定义一个注册类,同时进行多个类的注册,如下
主要的使用过程就三步:
1.设置序列化使用的库
conf.set("spark.serializer", "org.apache.spark.serializer.KryoSerializer"); //使用Kryo序列化库
2.在该库中注册用户定义的类型
conf.set("spark.kryo.registrator", toKryoRegistrator.class.getName()); //在Kryo序列化库中注册自定义的类集合
3.在自定义类中实现KryoRegistrator接口的registerClasses方法.要求自定义类实现Serializable,即下面的temp1、temp2类
public static class toKryoRegistrator implements KryoRegistrator {
public void registerClasses(Kryo kryo) {
kryo.register(tmp1.class, new FieldSerializer(kryo, tmp1.class)); //在Kryo序列化库中注册自定义的类
kryo.register(tmp2.class, new FieldSerializer(kryo, tmp2.class)); //在Kryo序列化库中注册自定义的类
}
}
二、如果只是注册一个类使用Kyro序列化,直接使用如下即可
1.设置序列化使用的库
conf.set("spark.serializer", "org.apache.spark.serializer.KryoSerializer"); //使用Kryo序列化库
2.注册序列化类
conf.registerKryoClasses((Class<?>[]) Arrays.asList(ConsumerRecord.class).toArray());