2021-09-16差异表达基因时的Log2FC和FDR值的含义?

转录组分析差异表达基因时,结果中会出现Log2FCFDR值,这两个是什么意思呢?

log2FC中的FC即 fold change,表示两样品(组)间表达量的比值,对其取以2为底的对数之后即为log2FC。一般默认取log2FC绝对值大于1为差异基因的筛选标准;

FDR即False Discovery Rate,错误发现率,是通过对差异显著性p值(p-value)进行校正得到的。由于转录组测序的差异表达分析是对大量的基因表达值进行独立的统计假设检验,会存在假阳性问题,因此在进行差异表达分析过程中,采用了公认的Benjamini-Hochberg校正方法对原有假设检验得到的显著性p值(p-value)进行校正,并最终采用FDR作为差异表达基因筛选的关键指标。一般取FDR<0.01或者0.05作为默认标准。

这两个指标的选取一般是按照经验值去筛选的,并非完全不可以调整。在实验差异基因数目过低或者过高,可以对指标进行微调。

实际上经常看到的差异表达火山图(如下图)里的几条虚线就是这两个指标的体现。

为什么要用FDR

在转录组分析中,如何确定某个转录本在不同的样品中表达量是否有差异是分析的核心内容之一。一般来说,我们认为,不同样品中,表达量差异在两倍以上的转录本,是具有表达差异的转录本。为了判断两个样品之间的表达量差异究竟是由于各种误差导致的还是本质差异,我们需要根据所有基因在这两个样本中的表达量数据进行假设检验。常用的假设检验方法有t-检验、卡方检验等。很多刚接触转录组分析的人可能会有这样一个疑问,一个转录本是不是差异表达,做完假设检验看P-value不就可以了么?为什么会有FDR这样一个新的概念出现?这是因为转录组分析并不是针对一个或几个转录本进行分析,转录组分析的是一个样品中所转录表达的所有转录本。所以,一个样品当中有多少转录本,就需要对多少转录本进行假设检验。这会导致一个很严重的问题,在单次假设检验中较低的假阳性比例会累积到一个非常惊人的程度。举个不太严谨的例子。

假设现在有这样一个项目:

● 包含两个样品,共得到10000条转录本的表达量数据,

● 其中有100条转录本的表达量在两个样品中是有差异的。

● 针对单个基因的差异表达分析有1%的假阳性。

由于存在1%假阳性的结果,在我们分析完这10000个基因后,我们会得到100个假阳性导致的错误结果,加上100条真实存在的结果,共计200个结果。在这个例子中,一次分析得到的200个差异表达基因中,有50%都是假阳性导致的错误结果,这显然是不可接受的。为了解决这个问题,FDR这个概念被引入,以控制最终得到的分析结果中假阳性的比例。

如何计算FDR

FDR的计算是根据假设检验的P-value进行校正而得到的。一般来说,FDR的计算采用Benjamini-Hochberg方法(简称BH法),计算方法如下:

1. 将所有P-value升序排列.P-value记为P,P-value的序号记为i,P-value的总数记为m

2. FDR(i)=P(i)*m/i

3. 根据i的取值从大到小,依次执行FDR(i)=min{FDR(i),FDR(i+1)}

注:实际上,BH法的原始算法是找到一个最大的i,满足P≤i/m*FDR阈值,此时,所有小于i的数据就都可以认为是显著的。在实践中,为了能够在比较方便的用不同的FDR阈值对数据进行分析,采用了步骤3里的方法。这个方法可以保证,不论FDR阈值选择多少,都可以直接根据FDR的数值来直接找到所有显著的数据。

下面我们以一个包含10个数据的例子来看一下FDR计算的过程

在这个例子中,第一列是原始的P-value,第二列是排序后的序号,第三列是根据P-value校正得到的初始FDR,第四列是最终用于筛选数据的FDR数值。如果我们设定FDR<0.05,那么绿色高亮的两个数据就是最终分析认为显著的数据。

FDR的阈值选择在转录组分析中是非常重要的一个环节,常用的阈值包括0.01、0.05、0.1等。实践中也可以根据实际的需要来灵活选择。例如,在做真菌或者原核生物的转录组分析时,由于这些物种转录本数量较少,假阳性累积的程度较低,所以可以适当将FDR阈值设置的较高一些,这样可以获得较多的差异表达结果,有利于后续的分析。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,922评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,591评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,546评论 0 350
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,467评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,553评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,580评论 1 293
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,588评论 3 414
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,334评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,780评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,092评论 2 330
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,270评论 1 344
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,925评论 5 338
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,573评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,194评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,437评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,154评论 2 366
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,127评论 2 352

推荐阅读更多精彩内容