Topological Data Analyze M.II.1-3

The first step towards the definition of simplicial homology is to find a good notion of ‘triangulation’ of a topological space.
The main idea is to construct a model of the topological space from little building blocks called ‘simplices’, like points, edges, triangles etc.
To give a mathematical defintion of simplices, we need to introduce the geometric concepts of affine and convex hull.

M.II.1 Affine- and convex hulls

Affine Combination:Consider p+1 points u_0,u_1,..., u_p in \mathbb{R^n}. A point \sum^p_{i=0}\lambda_i u_i \text{ where }\sum^p_{i=0}\lambda_i=1
with \lambda_0,...,\lambda_p \in \mathbb{R^n} is called an affine combination of the points u_0,..., u_p.

Affine Hull: The affine hull of the points u_0,...,u_p is the subset of \mathbb{R^n} consisting of all affine combinations of the given points u_0,...,u_p.
aff\{u_0,...,u_p\}:=\{x=\sum\lambda_i u_i | \lambda_i \in \mathbb{R}\ and\ \sum \lambda_i=1\}

  • The points u_0,...,u_p are called affinely independent if for any v_0,...,v_p \in \mathbb{R} the following holds
    \left(\sum_{i=0}^{p} \nu_{i} u_{i}=0\ \&\ \sum_{i=0}^{p} \nu_{i}=0\right) \Longrightarrow \nu_{0}=\cdots=\nu_{p}=0
    We can have at most n+1 affinely independent points in \mathbb{R^n} because there are at most n linearly independent vectors in \mathbb{R^n}.
  • The affine subspace aff\{u_0,...,u_p\} has dimension p (and is then called a p-plane) if and only if: the p vectors u_1-u_0,...,u_p-u_0 are linearly independent in \mathbb{R^n}.
    \begin{array}{l} \Longleftrightarrow \sum_{i=1}^{p} \mu_{i}\left(u_{i}-u_{0}\right)=0 \text { iff } \mu_{1}=\cdots=\mu_{p}=0 \\ \Longleftrightarrow\left(\sum_{i=0}^{p} \nu_{i} u_{i}=0\ \&\ \sum_{i=0}^{p} \nu_{i}=0\right) \text { iff } \nu_{0}=\cdots=\nu_{p}=0 \end{array}

To see what the affine hull means geometrically, we write
\begin{aligned} x &=\sum_{i=0}^{p} \lambda_{i} u_{i} \\ &=\lambda_{0} u_{0}+\lambda_{1} u_{1}+\cdots+\lambda_{p} u_{p} \\ &=u_{0}+\lambda_{1}\left(u_{1}-u_{0}\right)+\cdots+\lambda_{p}\left(u_{p}-u_{0}\right) \end{aligned}

(use that \lambda_0=1-\lambda_1- ... - \lambda_p since \sum \lambda_i=1. )

image.png

Convex Combination: An affine combination x=\sum^p_{i=0}\lambda_i u_i with \sum^p_{i=0} \lambda_i=1 if \lambda_i>0 for all 0\leq i \leq p.

Convex Hull: The convex hull of the points u_0,...,u_p is the subset of \mathbb{R^n} consisting of all convex combinations of the given points.
conv\{u_0,...,u_p\}:=\left\{x=\sum \lambda_{i} u_{i} \mid \lambda_{i} \in \mathbb{R} \text { and } \sum \lambda_{i}=1 \text { and } \lambda_{i} \geq 0\right\}

Convex:A subset A of \mathbb{R^n} is said to be convex if for any two points x and y in A the line segment [x,y] joining them is contained in A.

Exercise 7: Prove that the convex hull of any given p+1 points in \mathbb{R^n} is a convex subset of \mathbb{R^n}.
:
[xy]=\left\{Q_{t}=x+t \cdot(y-x) \mid 0 \leqslant t \leqslant 1\right\}
from x,y\in X = \text{conv}\{u_0,...,u_p\} we know
\begin{array}{ll}x=\sum \lambda_{i} u_{i} & \sum \lambda_{i}=1 \quad \lambda_{i} \geqslant 0 \\ y=\sum \mu_{i} u_{i} & \sum{\mu_{i}=1}\quad \mu_{i} \geqslant 0\end{array}
Show that Q_t\in X, \forall\ 0\leq t\leq 1
\begin{aligned} Q_{t} &=x+t \cdot(y-x) \\ &=\sum \lambda_{i} u_{i}+t \cdot\left(\sum \mu_{i} u_{i}-\sum{\lambda_i} u_{i}\right) \\ &=\sum\left(t \mu_{i}+(1-t) \lambda_{i}\right) u_{i} \end{aligned}
since t \mu_{i}+\underbrace{(1-t)}_{\geqslant 0} \lambda i \geqslant 0
and
\begin{array}{l} \sum(t \mu_i+(1-t) \lambda_i) &=\sum( t \mu_{i}+\lambda_{i}-t \lambda_{i}) \\ &=t \cdot \underbrace{\sum \mu_{i}}_{=1}+\underbrace{\sum \lambda_{i}}_{=1}-t \cdot \underbrace{\sum \lambda_i}_{=1}=\Sigma \lambda_{i}=1 \end{array}
Conclusion:
Q_{t} \in \operatorname{cov}\left\{u_{0}, \cdots, u_{p}\right\} \quad \forall t

Example M.II.1

(a) conv\{u_0\}=\{u+0\}
(b) line segment joining u_{0} and u_{1}
\begin{aligned} \operatorname{conv}\left\{u_{0}, u_{1}\right\} &=\left\{\lambda_{0} u_{0}+\lambda_{1} u_{1} \mid \lambda_{0}, \lambda_{1} \geq 0 \& \lambda_{0}+\lambda_{1}=1\right\} \\ &=\left\{u_{0}+\lambda_{1}\left(u_{1}-u_{0}\right) \mid 0 \leq \lambda_{1} \leq 1\right\} \\ &=\left[u_{0} u_{1}\right]\end{aligned}
(c) Triangle with vertices u_0,u_1 and u_2.
\begin{aligned} \operatorname{conv}\left\{u_{0}, u_{1},u_2\right\} &=\left\{\lambda_{0} u_{0}+\lambda_{1} u_{1} +\lambda_2 u_{2} \mid \lambda_{0}, \lambda_{1}, \lambda_{2}\ \geq 0\ \&\ \lambda_{0}+\lambda_{1}+\lambda_{2}=1\right\} \\ &=\left\{u_{0}+\lambda_{1}(u_{1}-u_{0})+\lambda_{2}(u_2-u_0) \mid 0 \leq \lambda_{1},\lambda_{2} \leq 1\right\} \\ \end{aligned}

M.II.2 Simplices

Definition M.II.2 Simplices

The p-simplex \sigma spanned by p+1 affinely independent points u_{0}, \ldots, u_{p}i n \mathbb{R}^{n} is defined to be the convex hull of the points, given by
\sigma =\operatorname{conv}\left\{u_{0}, \ldots, u_{p}\right\} =\left\{x=\sum \lambda_{i} u_{i} \mid \lambda_{i} \in \mathbb{R} \text { and } \sum \lambda_{i}=1 \text { and } \lambda_{i} \geq 0\right\}

  • The points u_0,...,u_p are called the vertices of \sigma.
  • The number p is called the dimension of the simplex \sigma and is denoted by dim\ \sigma.

There are special names for simplices in small dimensions.

dimension name
0 vertex
1 edge
2 triangle
3 tetrahedron

Barycentric Coordinates: The coefficients \lambda_i in x=\sum \lambda_i u_i are called the barycentric coordinates of the points x in the simplex \sigma with respect to the points u_0,...,u_p.
They are uniquely determined by the point x since the points u_0,...,u_p are assumed to be affinely independent.

Standard p-simplex: The p-simplex in \mathbb{R^{p+1}} spanned by the p+1 unit vectors.

Using barycentric coordinates, the standard p-simplex is mapped to any given p-simplex that is spanned by the points u_0,...,u_p in \mathbb{R^n} by the following affine transformation:
\mathbb{R}^{p+1} \ni\left(t_{0}, \ldots, t_{p}\right) \longmapsto \sum_{i=0}^{p} t_{i} u_{i} \in \mathbb{R}^{n}
which defines a homeomorphism between the standard p-simplex and the simplex spanned by the points u_0,...,u_p

Exercise 8: Prove that this map defines a homeomorphism between the standard p-simplex and the simplex spanned by the points u_0,...,u_p
T is well defined:
T is continuous: (ex4) all affine transformation is continuous
T is bijective
T inverse is continuous?
:
T(U) open if U is open?
:

Face and Coface: A simplex \tau spanned by a (proper) subset of the vertex set \left\{u_{0}, \ldots, u_{p}\right\} is called a (proper) face of \sigma, denoted by \tau \leq \sigma(\tau<\sigma) .
In this case, \sigma is also called a (proper) coface of \tau.

Boundary: The union of all proper faces of the simplex \sigma is called the boundary of \sigma, denoted bybd\ \sigma.
Interior: Boundary's complement in \sigma is the interior of \sigma, denoted by int\ \sigma.
The boundary and the interior of \sigma are related by int\ \sigma=\sigma \backslash bd\ \sigma.

Observation M.II.3 basic facts about simplices

(a) Every simplex is convex
convex hull is convex set: from ex7

(b) A p-simplex has 2^{p+1}-1 faces
p-simplex has p+1 vertices, means 2^{p+1} faces.

(c) For a p-simplex \sigma in \mathbb{R^n}. If n=p then the interior int\ \sigma of \sigma is an open subset of \mathbb{R^n}.(No longer true if n>p)
any point in int\ \sigma, its distance to the boundary is larger than zero, then we can define a number smaller than the distance as the radius of the open ball

(d) The interior and the boundary in form of barycentric coordinates: A point x=\sum \lambda_i u_i in \sigma belongs to the unique face of \sigma spanned by those vertices u_i for which \lambda_i>0.

In particular, we have
x\in int\ \sigma if and only if \lambda_i>0 for all 0\leq i \leq p
x\in bd\ \sigma if and only if \lambda_i=0 for some i\in \{0,...,p\}

(e) For a p-simplex, there is a homeomorphism \sigma \cong B^{p} between \sigma and the p-ball B^{p} that maps the boundary \mathrm{bd}\ \sigma onto the (p-1)-sphere S^{p-1}.

image.png


M.II.3 Geometric Simplicial Complexes

Definition M.II.4: Geometric simplicial complex

A geometric simplcial comlpex K in \mathbb{R}^n is a finite collection of simplices in \mathbb{R}^n with the following two properties.

  • (1) Every face of a simplex in K is contained in K. (\sigma \in K\ \text{and}\ \tau \leq \sigma\ \Longrightarrow \tau \in K)
  • (2) The intersection of any two simplices in K is either empty or a face of each of them. (\sigma,\sigma’ \in\ K\ \Longrightarrow\ either\ \sigma\ \cap\ \sigma'=\emptyset\or\ \sigma\cap\ \sigma' \leq\ \sigma, \sigma')

Dimension: dim\ K is the maximum dimension of any its simplices. If dim\ K=p, then K is a geometric simplicial p-complex.

(full) Subcomplex: A simplicial complex L\subseteq K. It is said to be full when it contains all simplices in K that are spanned by vertices in L.

Skeleton: The subcomplex of K consisting of all simplicies of dimension at most p is called the p-skeleton of K and is denoted by K^{(p)}=\{\sigma\in K\ |\ dim\ \sigma \leq p \} .
The 0-skelekton is also called vertex set of K and is denoted by Vert\ K:=K^{(0)}

Underlying space: For a simplicial complex K in \mathbb{R^n}, the union of all its simplices is the underlying space of K, denoted by |K|:=\sigma_{1} \cup \sigma_{2} \cup \cdots \cup \sigma_{m} \subset \mathbb{R}^{n}.
By endowing a underlying space with the subspace topology induced from the standard topology on \mathbb{R^n}, we can get a topological space, which is also called a polyhedron

Remark M.II.6

  • (a) A geometric simplicial complex K is a subset of some ambient space \mathbb{R^n}.
  • (b) Assume K to be finite, because point cloud data sets are finite sets,
  • (c) often label the simplices in K

Example M.II.5 Geometric simplicial complexes

  • (a) Take a bunch of points u_{0}, u_{1}, u_{2}, u_{3}, u_{4} and consider the collection K=\left\{\left\{u_{0}\right\},\left\{u_{1}\right\},\left\{u_{2}\right\},\left\{u_{3}\right\},\left\{u_{4}\right\}\right\}

  • (b) Take 2 points u_0,u_1 and consider the collection K=\{\{u_0\},\{u_1\},conv\{u_0,u_1\}\}

  • (c) Take 3 points u_0,u_1,u_2 and consider the collection K=\{\{u_0\},\{u_1\},\{u_2\},conv\{u_0,u_1\},conv\{u_0,u_2\}\}

  • (e) Not a simplicial complex K=\left\{\left\{u_{0}\right\},\left\{u_{1}\right\},\left\{u_{2}\right\},\left\{u_{3}\right\}, \operatorname{conv}\left\{u_{0}, u_{1}\right\}, \operatorname{conv}\left\{u_{2}, u_{3}\right\}\right\}

Definition M.II.7 Triangulation

A triangulation of a topological space X is a geometric simplicial complex K together with a homeomorphism |K|\stackrel{\cong}{\longrightarrow}X
A topological space is said to be triangulable if it admits a triangulaiton.

Example M.II.8 Triangulations

(a) The circle again

Exercise 10: Give 2 triangulations of the 2-sphere with different simplicial cimplexes. Write down explicity the simplices in each simplcial complex and draw it.

Remark M.II.9

Not every space admits a triangulation. But triangulations do exist as long as the topological space is 'sufficient nice'. Our example will always be of that sort.

If we admit infinite simplicial complexes, the following is true:

  • Every smooth manifold admits a triangulation
  • Topological manifolds always admit triangulations in dimensionat most 3
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
禁止转载,如需转载请通过简信或评论联系作者。
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,923评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,154评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,775评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,960评论 1 290
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,976评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,972评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,893评论 3 416
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,709评论 0 271
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,159评论 1 308
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,400评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,552评论 1 346
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,265评论 5 341
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,876评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,528评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,701评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,552评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,451评论 2 352

推荐阅读更多精彩内容