《机器学习实战》第二章 k-近邻算法

K-近邻算法概述

  • 描述: 用测量不同特征值之间的距离方法进行分类。
  • 优点: 精度高、对异常值不敏感、无数据输入假定。
  • 缺点: 计算复杂度高、空间复杂度高。
  • 适用数据范围: 数值型和标称型。
  • 工作原理: 已知样本集中每一数据与所属分类的对应关系,将新数据与样本集中数据对应的特征进行比较,将前k个与最相似的样本集中数据的标签提取,选择其中出现次数最多的分类,作为新数据的分类。
  • 注: 一般来说,我们只选择样本数据集中前k个最相似的数据,这就是k-近邻算法中&的出处,通常是不大于20的整数。

k-近邻算法的一般流程:
(1)收集数据:可以使用任何方法。
(2)准备数据:距离计算所需要的数值,最好是结构化的数据格式。
(3)分析数据:可以使用任何方法。
(4)训练算法:此步驟不适用于1 近邻算法。
(5)测试算法:计算错误率。
(6)使用算法:首先需要输入样本数据和结构化的输出结果,然后运行女-近邻算法判定输入数据分别属于哪个分类,最后应用对计算出的分类执行后续的处理。


小例子
kNN.py

from numpy import *
import operator
from os import listdir

#创建数据集和标签
def createDataSet():
    group = array([[1.0,1.1], [1.0,1.0], [0,0], [0,0.1]])
    labels = ['A', 'A', 'B', 'B']
    return group, labels

#从文本文件中解析数据
'''
对未知类别属性的数据集中的每个点依次执行以下操作:
(1)计算已知类别数据集中的点与当前点之间的距离;
(2)按照距离递增次序排序;
(3)选取与当前点距离最小的走个点;
(4)确定前灸个点所在类别的出现频率;
(5)返回前女个点出现频率最高的类别作为当前点的预测分类。
'''
#使用k-近邻算法将每组数据划分到某个类中
def classify0(inX, dataSet, labels,k): #参数分别为:输入向量,输入训练样本集,标签向量, 最临近邻居的数目
    dataSetSize = dataSet.shape[0]
    #欧式距离计算
    diffMat = tile(inX, (dataSetSize,1)) - dataSetSize # tile(A,rep) 重复A的各个维度 
    sqDiffMat = diffMat**2
    sqDistances = sqDiffMat.sum(axis=1)
    distances = sqDistances**0.5
    #根据距离排序
    sortedDistIndicies = distances.argsort()
    #选择距离最小的k个点
    classCount = {}
    for i in range(k):
        voteIlabel = labels[sortedDistIndicies[i]]
        classCount[voteIlabel] = classCount.get(voteIlabel, 0) + 1
    #排序(sorted函数第一个参数书上是itemitems(),python3.5后是items())
    sortedClassCount = sorted(classCount.items(), key=operator.itemgetter(1), reverse=True)
    return sortedClassCount[0][0]

main.py

import kNN
group, labels = kNN.createDataSet()
print(group)
print(labels)
print(kNN.classify0([0,0],group,labels,3))

输出:

[[1.  1.1]
 [1.  1. ]
 [0.  0. ]
 [0.  0.1]]
['A', 'A', 'B', 'B']
A
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,012评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,628评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,653评论 0 350
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,485评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,574评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,590评论 1 293
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,596评论 3 414
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,340评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,794评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,102评论 2 330
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,276评论 1 344
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,940评论 5 339
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,583评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,201评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,441评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,173评论 2 366
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,136评论 2 352

推荐阅读更多精彩内容