简单线性回归和最小二乘法

前言

线性回归模型看起来非常简单,简单到让人怀疑其是否有研究价值以及使用价值。但实际上,线性回归模型可以说是最重要的数学模型之一,很多模型都是建立在它的基础之上,可以被称为是“模型之母”。

简单线性回归

所谓简单,是指只有一个样本特征,即只有一个自变量;所谓线性,是指方程是线性的;所谓回归,是指用方程来模拟变量之间是如何关联的。

简单线性回归,其思想简单,实现容易(与其背后强大的数学性质相关。同时也是许多强大的非线性模型(多项式回归、逻辑回归、SVM)的基础。并且其结果具有很好的可解释性。
在我看来,简单线性回归就像是在求解我们初中时代学习的一元线性方程 y = ax + b的a、b参数一样,只不过这次求的是最符合样本数据的近似解,使得误差最小。

我们来看一个例子,温度与冰淇淋的销量:


看上去像是某种线性关系:

那么我们就假设这种关系是:
f(x) = ax + b
简单线性回归就是要寻求出a、b的值,使得f(x)最拟合真实情况。也就是真实的y值和预测的f(x)的差距尽可能的小。

通常来说,为了防止正误差值和负误差值相抵的情况,使用绝对值来表示距离:|y-f(x)|,但是在线性回归中,我们需要找极值,需要函数可导,而 不是一个处处可导的函数,因此很自然地想到可以使用:

考虑所有样本,我们推导出:


因此我们的目标就是:已知训练数据样本x、y ,找到a和b的值,使

尽可能小,从而得出最佳的拟合方程。

最小二乘法

举一个生活中的例子。比如说,有五把尺子:



用它们来分别测量一线段的长度,得到的数值分别为(颜色指不同的尺子):



有误差的情况下,一般取平均值来作为线段的长度:

首先,把测试得到的值画在笛卡尔坐标系中,分别记作 :


其次,把要猜测的线段长度的真实值用平行于横轴的直线来表示(因为是猜测的,所以用虚线来画),记作 :

每个点都向 y做垂线,垂线的长度就是|y—yi| ,也可以理解为测量值和真实值之间的误差:

因为误差是长度,还要取绝对值,计算起来麻烦,就干脆用平方来代表误差:

总的误差的平方就是:


因为 y是猜测的,所以可以不断变换:

自然,总的误差 也是在不断变化的。

法国数学家,阿德里安-馬里·勒讓德(1752-1833,)提出让总的误差的平方最小的 就是真值,这是基于,如果误差是随机的,应该围绕真值上下波动。

这就是最小二乘法,即:

这个猜想也蛮符合直觉的,来算一下。

这是一个二次函数,对其求导,导数为0的时候取得最小值:


image.png

进而:


正好是算术平均数。

原来算术平均数可以让误差最小啊,这下看来选用它显得讲道理了。

以下这种方法:

就是最小二乘法,所谓“二乘”就是平方的意思,台湾直接翻译为最小平方法。

最小二乘法推导简单线性回归

之前我们了解到的简单线性回归的目的:

已知训练数据样本x、y ,找到a和b的值,使

尽可能小,从而得出最佳的拟合方程。

那么我们利用最小二乘法来求解简单线性回归的解:


最终我们通过最小二乘法得到a、b的表达式:


©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,558评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,002评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,036评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,024评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,144评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,255评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,295评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,068评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,478评论 1 305
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,789评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,965评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,649评论 4 336
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,267评论 3 318
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,982评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,223评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,800评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,847评论 2 351

推荐阅读更多精彩内容