2020自然语言处理 BERT 模型(上)

BERT

今天我们想到 NLP 就会想到 BERT,在 NLP 领域中 BERT 到处屠榜。BERT 主要应用于自然语言处理中的预训练。这里想说一件有趣的事,就是当下比较火的自然语言处理模型如 ElMo 和 BERT 都是动画片芝麻街中角色。

感谢李宏毅分享

hulkbuster.jpg

BERT(Bidirectional Encoder Representations from Transformers)

bert_cover.jpeg

那么什么是 BERT 呢? 我们先从字面上解释一下什么是 BERT。

  • Bidirectional : 是双向神经网络,这个在学习 RNN 时候我们就了解到如何使用双向 RNN 让每一个词视野更加广阔,不但可以看到其前面词还能看到后面的词
  • Encoder : 说明 BERT 是编码器
  • Representations : BERT 是完成词的表现的任务的模型
  • Transformer: 表示 BERT 结构没有采用 LSTM 这样 RNN 结构,而是采用了 Transformer 这样结构来实现双向循环神经网,Transformer 对象 LSTM 的优势是并行计算

想了解 Transformer 可以参照
2020机器学习 Transform 模型(1)
2020机器学习 Transform 模型(2)
2020机器学习 Transform 模型(3)

我们先用一句话来概括一下 BERTBERT 做的事情就是接受一个句子,会输出一个词的表示,这就是 BERT所做的事情。

bert_apply.jpeg

BERT = 就是 Transformer 的编码器(Encoder)部分。
BERT 只是 Transformer 一部分,他优势在于无需收集带有标签的数据集我们就可以训练一个 BERT

BERT 和 ELMo 关系

其实我们应该先介绍一下 ELMo ,因为我们只要将 ELMo 中的 LSTM 替换为 Transformer 就是 BERT。说以我们应该先介绍一下 ELMo。


bert_and_elmo.jpg
bert_input.png

上面图是 BERT 输入,BERT 输入分为 3 个部分

  • Token Embedding: 在输入中有一些特殊字符[CLS]表示做分类任务,[SEP]表示句子之间间隔。这些大家不了解没有关系随后会详细介绍。为什么会有 [SEP] 呢,这是因为在训练 BERT 时候我们通常会输入 2 个句子,这两个句子间用 [SEP] 来进行分隔。
  • Segment EmBeddings: 这里E_AE_B 表示词(token)来自哪个句子 A 或是 B。这个应该不难理解
  • Position Embeddings E_1,E_2,\dots,E_{10} 表示词(token)在输入的位置

训练 BERT 方法有两种方式,也就是两种任务来进行 BERT 的训练

MLM(Masked Language Model)

类似完形填空,我们在输入句子的 15% 词用 [MASK] 来替换掉,然后 BERT 如何填补,通过对比填补内容是否正确作为目标。在 15% 词替换又分为以下 3 种情况

  • 80% 可能性会替换为[MASK]
  • 10% 可能性替换相似其他词
  • 10% 可能性会保持原样不动
mask_language_model.png

在值得注意时候在计算损失时候我们只针对[MASK]进行计算。
把[MASK]输入到一个线性多分类器(Linear Multi-class classifier) 能力很弱,如果成功预测出词汇,就说明 BERT 抽取很好词表示的向量。

NSP(Next Sentence Prediction)

在这个任务只要是判断前后两个句子是否有关联性。


next_sentence_prediction.jpg

给 BERT 输入两个句子,让 BERT 判断这两个句子是否有前后关联关系。这里需要引入[SEP] 词表示两个句子的分界线,[CLS] 通常放在输入序列第一个位置,[CLS]的输出给二分类的分类器(Linear Binary Classifier),这个线性分类器会给出分数。,大家可能认为 [CLS] 应该放在句尾,这里解释一下为什么放置序列首位,而不是其他位置。这是因为 BERT 内部使用 Transformer ,Transformer 中每一个位置都是均等的,给输入顺序无关,所以 [CLS] 可以放在任意位置。无论[CLS]放在句子开头还是放在结尾都是没有差别。

我们知道 BERT ,接下来看一看 BERT 应用。最简单应用就是根据我们任务让 BERT 作为提取特征工具提供一些词向量来作为使用。但是 paper 中还给出不止这些 BERT 应用。还有让 BERT 和你的模型一起训练

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,686评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,668评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,160评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,736评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,847评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,043评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,129评论 3 410
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,872评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,318评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,645评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,777评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,470评论 4 333
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,126评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,861评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,095评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,589评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,687评论 2 351

推荐阅读更多精彩内容