You need to construct a binary tree from a string consisting of parenthesis and integers.
The whole input represents a binary tree. It contains an integer followed by zero, one or two pairs of parenthesis. The integer represents the root's value and a pair of parenthesis contains a child binary tree with the same structure.
You always start to construct the left child node of the parent first if it exists.
Example:
Input: "4(2(3)(1))(6(5))"
Output: return the tree root node representing the following tree:
4
/ \
2 6
/ \ /
3 1 5
Note:
There will only be '(', ')', '-' and '0' ~ '9' in the input string.
An empty tree is represented by "" instead of "()".
Solution1:Recursive
思路:
首先我们要做的是先找出根结点值,我们找第一个左括号的位置,如果找不到,说明当前字符串都是数字,直接转化为整型,然后新建结点返回即可。
否则的话从当前位置开始遍历,因为当前位置是一个左括号,我们的目标是找到与之对应的右括号的位置,但是由于中间还会遇到左右括号,所以我们需要用一个变量cnt来记录左括号的个数,如果遇到左括号,cnt自增1,如果遇到右括号,cnt自减1,这样当某个时刻cnt为0的时候,我们就确定了一个完整的子树的位置。那么问题来了,这个子树到底是左子树还是右子树呢,我们需要一个辅助变量start,当最开始找到第一个左括号的位置时,将start赋值为该位置,那么当cnt为0时,如果start还是原来的位置,说明这个是左子树,我们对其调用递归函数,注意此时更新start的位置,这样就能区分左右子树了
Time Complexity: O(N) Space Complexity: O(N)
Solution2:Stack
思路:
借助栈stack来实现。
遍历字符串s,用变量j记录当前位置i,
如果遇到的是左括号,什么也不做继续遍历;
如果遇到的是数字或者负号,那么我们将连续的数字都找出来,然后转为整型并新建结点,
此时我们看stack中是否有结点,如果有的话,当前结点就是栈顶结点的子结点,如果栈顶结点没有左子结点,那么此结点就是其左子结点,反之则为其右子结点。之后要将此结点压入栈中。
如果我们遍历到的是右括号,说明栈顶元素的子结点已经处理完了,将其移除栈。
Time Complexity: O(N) Space Complexity: O(N)
Solution1 Code:
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
// Input: "4(2(3)(1))(6(5))"
class Solution {
public TreeNode str2tree(String s) {
if (s == null || s.length() == 0) return null;
int firstParen = s.indexOf("(");
int val = firstParen == -1 ? Integer.parseInt(s) : Integer.parseInt(s.substring(0, firstParen));
TreeNode cur = new TreeNode(val);
if (firstParen == -1) return cur;
int start = firstParen, leftParenCount = 0;
for (int i=start;i<s.length();i++) {
if (s.charAt(i) == '(') leftParenCount++;
else if (s.charAt(i) == ')') leftParenCount--;
// left ()
if (leftParenCount == 0 && start == firstParen) {
cur.left = str2tree(s.substring(start+1,i));
start = i+1; //从left()的) 跳到 right()的(
}
// right ()
else if (leftParenCount == 0) {
cur.right = str2tree(s.substring(start+1,i));
}
}
return cur;
}
}
Solution2 Code:
// Input: "4(2(3)(1))(6(5))"
public class Solution {
public TreeNode str2tree(String s) {
Stack<TreeNode> stack = new Stack<>();
for(int i = 0, j = i; i < s.length(); i++, j = i){
char c = s.charAt(i);
if(c == ')') stack.pop();
else if(c >= '0' && c <= '9' || c == '-'){
while(i + 1 < s.length() && s.charAt(i + 1) >= '0' && s.charAt(i + 1) <= '9') i++;
TreeNode currentNode = new TreeNode(Integer.valueOf(s.substring(j, i + 1)));
if(!stack.isEmpty()){
TreeNode parent = stack.peek();
if(parent.left != null) parent.right = currentNode;
else parent.left = currentNode;
}
stack.push(currentNode);
}
}
return stack.isEmpty() ? null : stack.peek();
}
}