1. 初始化dbt项目,将所需的表加载到staging里
1.安装项目所需要dbt包
- 安装所需要的包,在dbt项目的根目录,创建`packages.yml
packages:
- package: dbt-labs/dbt_utils
version: 1.1.1
- package: dbt-labs/codegen
version: 0.12.1
- package: calogica/dbt_expectations
version: 0.10.3
- 安装包
dbt deps
2.使用codegen给staging层的表,添加source
2.在staging层,创建tpch_sources.yml
用来配置staging层需要用到的表
1.使用codegen生成,在macros里创建一个generate_sources文件夹,专门用来使用codegen生成项目需要的yml
2.根据snowflake里的表参数,编写macros
- ’generate_tchp_sources.sql`
{{ codegen.generate_source(
name = 'tpch', # 引用时候用的名字
schema_name = 'TPCH_SF1', #实际数据库里的schema
database_name = 'SNOWFLAKE_SAMPLE_DATA', #数据库名
table_names = ['ORDERS','LINEITEM'], #表名
include_descriptions = True, #生成description
generate_columns =True #生成列名
) }}
3.使用codegen生成base model
-
生成好了sources之后,我们需要将基础的表加载到snowflake的view里,这就是base model
- 创建生成base mode的 macros ,
generate_tcph_orders.sql
{{ codegen.generate_base_model(
source_name='tpch',
table_name='lineitem',
materialized='view'
) }}
4.使用aiflow运行Dags
1.在airflow的dags里创建一个新的文件夹/dags/tcph_schedule
- 创建
run_tpch_models.py
from airflow import DAG
from airflow.operators.bash import BashOperator
from datetime import datetime
from dbtOp.dbt_operator import DbtOperator
_default_args = {
'max_active_runs': 1,
'catchup': False,
}
with DAG(
dag_id = 'tpch_data_transformation',
default_args= _default_args,
start_date = datetime(2024,4,12,1),
schedule_interval = None
) as dag:
tpch_staging = DbtOperator(
task_id='run_tpch_staging_model',
dbt_command='run --models staging.tpch.*'
)
tpch_staging
注意:run --models staging.tpch.*
意思是:run staging/tpch文件夹下的所有dags
-
此时airflow的web界面是没有我们新建的dag的,需要配置config,将我们的文件夹添加进去
#
dags_folder = /opt/airflow/dags
dags_folder = /opt/airflow/dags/tpch_schedule
4.运行airflow的
- snowflake的view里有了我们刚才的staing
注意:由于我们在root/.dbt/profiles.yml中填写的默认数据库是airbnb,schema是raw,所以该数据view是在airbnb里
2. 在dbt_project.yml
里配置mateiralize
- 指定Models的materialize和data_warehouse
models:
my_dbt:
# Config indicated by + and applies to all files under models/example/
staging:
materialized: view
snowflake_warehouse: COMPUTE_WH
marts:
materialized: table
snowflake_warehouse: COMPUTE_WH
3.创建Dim表和Fact表
1.在marts里分别创建int_order_items.sql
表和fct_orders.sql
表
int_order_items.sql
with orders as (
select * from {{ ref('stg_tpch_orders') }}
),
line_item as (
select * from {{ ref('stg_tpch_line_items') }}
)
select
line_item.order_item_key,
orders.order_key,
orders.customer_key,
orders.order_date,
orders.status_code as order_status_code,
line_item.part_key,
line_item.supplier_key,
line_item.return_flag,
line_item.line_number,
line_item.status_code as order_item_status_code,
line_item.ship_date,
line_item.commit_date,
line_item.receipt_date,
line_item.ship_mode,
line_item.extended_price,
line_item.quantity,
-- extended_price is actually the line item total,
-- so we back out the extended price per item
(line_item.extended_price/nullif(line_item.quantity, 0))::decimal(16,2) as base_price,
line_item.discount_percentage,
(base_price * (1 - line_item.discount_percentage))::decimal(16,2) as discounted_price,
line_item.extended_price as gross_item_sales_amount,
(line_item.extended_price * (1 - line_item.discount_percentage))::decimal(16,2) as discounted_item_sales_amount,
-- We model discounts as negative amounts
(-1 * line_item.extended_price * line_item.discount_percentage)::decimal(16,2) as item_discount_amount,
line_item.tax_rate,
((gross_item_sales_amount + item_discount_amount) * line_item.tax_rate)::decimal(16,2) as item_tax_amount,
(
gross_item_sales_amount +
item_discount_amount +
item_tax_amount
)::decimal(16,2) as net_item_sales_amount
from
orders
inner join line_item
on orders.order_key = line_item.order_key
order by
orders.order_date
fct_orders.sql
with orders as (
select * from {{ ref('stg_tpch_orders') }}
),
order_item as (
select * from {{ ref('int_order_items') }}
),
order_item_summary as (
select
order_key,
sum(gross_item_sales_amount) as gross_item_sales_amount,
sum(item_discount_amount) as item_discount_amount,
sum(item_tax_amount) as item_tax_amount,
sum(net_item_sales_amount) as net_item_sales_amount
from order_item
group by
1
),
final as (
select
orders.order_key,
orders.order_date,
orders.customer_key,
orders.status_code,
orders.priority_code,
orders.clerk_name,
orders.ship_priority,
1 as order_count,
order_item_summary.gross_item_sales_amount,
order_item_summary.item_discount_amount,
order_item_summary.item_tax_amount,
order_item_summary.net_item_sales_amount
from
orders
inner join order_item_summary
on orders.order_key = order_item_summary.order_key
)
select
*
from
final
order by
order_date
4.创建Dags,自动运行上面的Models
from airflow import DAG
from airflow.operators.bash import BashOperator
from datetime import datetime
from dbtOp.dbt_operator import DbtOperator
_default_args = {
'max_active_runs': 1,
'catchup': False,
}
with DAG(
dag_id = 'tpch_data_transformation',
default_args= _default_args,
start_date = datetime(2024,4,12,1),
schedule_interval = None
) as dag:
tpch_staging = DbtOperator(
task_id='run_tpch_staging_model',
dbt_command='run --models staging.tpch.*'
)
tpch_int_orders = DbtOperator(
task_id='run_int_order_items',
dbt_command='run --models int_order_items'
)
tpch_fact_orders = DbtOperator(
task_id='run_fact_orders',
dbt_command='run --models fct_orders'
)
tpch_staging >> tpch_int_orders >> tpch_fact_orders
-
运行Dags成功
5. 修改staging为 ephemeral
- 上面staging一直作为view来存放,会占用系统资源,他只是一个加载原始表的过程,所以,我们使用ephemeral来优化
1.修改dbt_project.yml
文件,将staging的materialize修改
# files using the `{{ config(...) }}` macro.
models:
my_dbt:
# Config indicated by + and applies to all files under models/example/
staging:
materialized: ephemeral
snowflake_warehouse: COMPUTE_WH
marts:
materialized: table
snowflake_warehouse: COMPUTE_WH
2.重新运行我们的Dags,运行成功后,snowflake里的stg_表 ,已经不再view里
6. 修改配置文件,将环境切换到product环境
由于,我们已经将本地root/.dbt里的配置文件profiles.yml
实时映射给了docker里的dbt的环境,所以修改该文件等于实时更改了docker里的dbt配置,将dev 更改为pro
my_dbt:
outputs:
dev:
account: zxitxjd-aj37059
database: airbnb
password: shangxi123.SNOW
role: transform
schema: RAW
threads: 5
type: snowflake
user: lg101
warehouse: COMPUTE_WH
project:
account: zxitxjd-aj37059
database: airbnb
password: shangxi123.SNOW
role: transform
schema: TPCH
threads: 5
type: snowflake
user: lg101
warehouse: COMPUTE_WH
target: project
7.给我们当前运行正常的代码添加general test和singular test
- 在marts/core文件夹下,添加一个core.yml文件,该文件可以使用codegen生成
{{ codegen.generate_model_yaml(
model_names=['fct_orders','int_order_items']
) }}
- 修改
core.yml
文件,添加表字段的测试
models:
- name: fct_orders
description: ""
columns:
- name: order_key
data_type: number
description: ""
tests:
- unique
- not_null
- relationships:
to: ref('stg_tpch_orders')
field: order_key
severity: warn
- name: order_date
data_type: date
description: ""
3.在tests文件夹下,添加singular tests文件t_fct_orders_negative_discount.sql
select * from
{{ ref('fct_orders') }}
where item_discount_amount > 0