R语言假设检验两类错误的概率

Task 1

Assume samples X1, · · · , Xn are independently identically distribution from P(λ), consider the hypothesis

test

H_0 : λ ≥ 1 vs H_1 : λ < 1

and the test statistic is

T(X1, · · · , Xn) = \sum _n^iX_i=1

and the form of rejection region is

W = {T(X_1, · · · , X_n) ≤ C}.

Next we will investigate how the sample size n, the true value of λ and the significance level α influence the power of test.

Note that the power function is

g(λ) = P(T(X1, · · · , Xn) ≤ C|T(X1, · · · , Xn) ~ P(nλ)),

which can be obtained via ppois(C, nλ) in R.

  • Here, function PoissonPowerf() gives the value of power function for poisson distribution for sample n, the critical value C, and the true λ.
PoissonPowerf<-function(n=10,C=5,lambdas=1){

lam<-n*lambdas

alpha_lam<-ppois(C,lambda = lam)

return(alpha_lam)
  1. Obtain power function curve under different samples with the sample critical value C.
lams<-seq(0.01,2,by=0.01)

#true value of candidate for lambda

Ns<-c(10,20,40)

#sample size

power.n<-matrix(0,nr=length(lams),nc=length(Ns))

#length(lams) times length(Ns) matrix

#element[i,j] being the power when true value of lambda is lam[i] and sample size is Ns[j].

for (i in 1:length(lams)) {

for (j in 1:length(Ns)) {

power.n[i,j]<-PoissonPowerf(n=Ns[j],C=7,lambdas = lams[i])

} }

#plot

plot(lams,power.n[,1],type = 'l',lty=1,xlab = expression(lambda),ylab = 'Power',

main = 'Power function under different sample sizes',lwd=2)

lines(lams,power.n[,2],lty=2,col=2,lwd=2)

lines(lams,power.n[,3],lty=3,col=3,lwd=2) 1

abline(v=1,lwd=2)

legend('topright',legend = c('n=10', 'n=20','n=40'), lty=1:3,col=1:3,lwd=2)
在这里插入图片描述

From the above figure, it follows:

  • For fixed n, the power function is decreasing function as λ ranging from 0 to 2, and the power is greater as

the true value of λ deviation from the null hypothesis H0 : λ ≥ 1.

  • Given the rejection region W = {T(X1, · · · , Xn) ≤ 7}, the power function decreases as the sample sizes

increase, and specically the significance levels decreases as n increases.

  1. Obtain power function curve under different samples with the sample α.

To obtain it, we should calculate the rejection region, i.e., the critical value of C. By the definition of

signicance test with significance level α, it suffices to determine C such that

g(λ) = P(T(X1, · · · , Xn ≤ C)|T ~ P(nλ)) ≤ α, ?λ ∈ H0.

Recall that g(λ) is a decreasing function for λ ≥ 1, thus ?λ ≥ 1, g(λ) ≤ α is equivalent to

g(1) = P(T(X1, · · · , Xn ≤ C)|T ~ P(n)) ≤ α,

from which we can obtain C via qpois(α, n) in R. That is,

power.alpha<-matrix(0,nr=length(lams),

nc=length(Ns))

for (j in 1:length(Ns)) {

Cs<-qpois(0.05,Ns[j])

for (i in 1:length(lams)) {

power.alpha[i,j]<-PoissonPowerf(n=Ns[j],C=Cs,lambdas = lams[i])
#plot
plot(lams,power.alpha[,1],type = 'l',lty=1,xlab = expression(lambda),ylab = 'Power',

main = 'Fixed alpha, power function under different sample sizes',lwd=2)

lines(lams,power.alpha[,2],lty=2,col=2,lwd=2)

lines(lams,power.alpha[,3],lty=3,col=3,lwd=2)

abline(v=1,lwd=2)

legend('topright',legend = c('n=10', 'n=20','n=40'), lty=1:3,col=1:3,lwd=2)

Similarly, from the above figure, it follows:

  • For fixed n and α, the power function is decreasing function as λ ranging from 0 to 2, and the power is

greater as the true value of λ deviation from the null hypothesis H0 : λ ≥ 1.

  • For fixed α, the power function increases as the sample sizes increase.
  1. In summary, we can see that

the power of test increases as the true value of λ derviation far from H0; ? for fixed significance level α, the power of test increases as sample size increases;

yet for fixed critical value, i.e. C = 7, the power decreases as the sample size increase, which leads the

decreasing of the siginicance level α. 3


在这里插入图片描述
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,128评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,316评论 3 388
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,737评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,283评论 1 287
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,384评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,458评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,467评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,251评论 0 269
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,688评论 1 306
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,980评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,155评论 1 342
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,818评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,492评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,142评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,382评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,020评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,044评论 2 352

推荐阅读更多精彩内容

  • 今天感恩节哎,感谢一直在我身边的亲朋好友。感恩相遇!感恩不离不弃。 中午开了第一次的党会,身份的转变要...
    迷月闪星情阅读 10,561评论 0 11
  • 彩排完,天已黑
    刘凯书法阅读 4,205评论 1 3
  • 表情是什么,我认为表情就是表现出来的情绪。表情可以传达很多信息。高兴了当然就笑了,难过就哭了。两者是相互影响密不可...
    Persistenc_6aea阅读 124,681评论 2 7