线性、岭、lasso和逻辑回归

1. 线性回归

2. 岭回归

岭回归


不是满秩矩阵无法求逆

将原来的矩阵和单位矩阵相加:

相加后的得到:

这样就达到满秩矩阵啦,好啦,我们开始求逆吧。


实例

这个时候怎么选择系数能达到最好的效果那。
alpha是多少为好,得试。在岭回归内,选择alpha是最重要的一个工作。

岭回归alpha系数的选择问题




通过以上可以发现,上面的权重为0,不符合条件。



alpha值越大,得到系数越小。引入值越大相当于加入偏差,一般都是零点零几,

十条线,十个系数。
alpha的选择对的现象是,系数波动很缓,



可以根据哪些变化不大的,砍掉,因为不重要啊。

3. lasso回归






这里创建数据没有添加偏差 fit_intercept=False




4. 逻辑回归


4. 逻辑斯蒂回归
Logistics回归的原理

利用Logistics回归进行分类的主要思想是:根据现有数据对分类边界线建立回归公式,以此进行分类。这里的“回归” 一词源于最佳拟合,表示要找到最佳拟合参数集。

训练分类器时的做法就是寻找最佳拟合参数,使用的是最优化算法。接下来介绍这个二值型输出分类
Logistic Regression和Linear Regression的原理是相似的,可以简单的描述为这样的过程:

(1)找一个合适的预测函数,一般表示为h函数,该函数就是我们需要找的分类函数,它用来预测输入数据的判断结果。这个过程是非常关键的,需要对数据有一定的了解或分析,知道或者猜测预测函数的“大概”形式,比如是线性函数还是非线性函数。

(2)构造一个Cost函数(损失函数),该函数表示预测的输出(h)与训练数据类别(y)之间的偏差,可以是二者之间的差(h-y)或者是其他的形式。综合考虑所有训练数据的“损失”,将Cost求和或者求平均,记为J(θ)函数,表示所有训练数据预测值与实际类别的偏差。

(3)显然,J(θ)函数的值越小表示预测函数越准确(即h函数越准确),所以这一步需要做的是找到J(θ)函数的最小值。找函数的最小值有不同的方法,Logistic Regression实现时有梯度下降法(Gradient Descent)。
1) 构造预测函数
Logistic Regression虽然名字里带“回归”,但是它实际上是一种分类方法,用于两分类问题(即输出只有两种)。首先需要先找到一个预测函数(h),显然,该函数的输出必须是两类值(分别代表两个类别),所以利用了Logistic函数(或称为Sigmoid函数),函数形式为:


该函数形状为:

预测函数可以写为:


2)构造损失函数
Cost函数和J(θ)函数是基于最大似然估计推导得到的。
每个样本属于其真实标记的概率,即似然函数,可以写成:

所有样本都属于其真实标记的概率为

对数似然函数为

最大似然估计就是要求得使l(θ)取最大值时的θ,其实这里可以使用梯度上升法求解,求得的θ就是要求的最佳参数
3) 梯度下降法求J(θ)的最小值
求J(θ)的最小值可以使用梯度下降法,根据梯度下降法可得θ的更新过程:


式中为α学习步长,下面来求偏导:

上式求解过程中用到如下的公式:

因此,θ的更新过程可以写成:



因为式中α本来为一常量,所以1/m一般将省略,所以最终的θ更新过程为:


==========================================
逻辑回归模型是一种将影响概率的不同因素结合在一起的指数模型。和很多指数模型(例如最大熵模型)一样,它们的训练方法相似,都可以采用迭代算法GIS和改进的迭代算法IIS来实现。除了在信息处理中的应用,逻辑回归模型还广泛应用于生物统计。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 218,386评论 6 506
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 93,142评论 3 394
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 164,704评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,702评论 1 294
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,716评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,573评论 1 305
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,314评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,230评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,680评论 1 314
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,873评论 3 336
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,991评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,706评论 5 346
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,329评论 3 330
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,910评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,038评论 1 270
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,158评论 3 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,941评论 2 355

推荐阅读更多精彩内容