1018 Public Bike Management
可以说是非常不在状态了。。。
这题是dijkstra求最短路,再dfs按照pre回溯。方括号小括号套的层数有点多,写蒙了。。。神奇的错误不断。。。
注意点是从0到nn的
冷静冷静再写一次吧233333先次饭饭🍚🍢嘻嘻
#include <cstdio>
#include <vector>
#include <stack>
#include <algorithm>
using namespace std;
const int INF = 0x3f3f3f3f;
int mmax, nn, target, mm;
vector<pair<int, int>> graph[510];
int station[510];
int dist[510], visited[510];
vector<int> pre[510];
int min_need = INF, min_back = INF;
vector<int> best_path, path; //node
void dijkstra(int src) {
for (int i = 0; i <= nn; ++i) {
visited[i] = false;
dist[i] = INF;
}
dist[src] = 0;
int min_dist, nearest;
for (int j = 0; j <= nn; ++j) {
min_dist = INF, nearest = INF;
for (int k = 0; k <= nn; ++k) {
if (!visited[k] && dist[k] < min_dist) {
min_dist = dist[k];
nearest = k;
}
}
if (nearest == INF) break;
visited[nearest] = true;
for (int i = 0; i < graph[nearest].size(); ++i) {
if (!visited[graph[nearest][i].first]) {
int new_dist = dist[nearest] + graph[nearest][i].second;
if (new_dist < dist[graph[nearest][i].first]) {
dist[graph[nearest][i].first] = new_dist;
pre[graph[nearest][i].first].clear();
pre[graph[nearest][i].first].push_back(nearest);
} else if (new_dist == dist[graph[nearest][i].first]) {
pre[graph[nearest][i].first].push_back(nearest);
}
}
}
}
}
void dfs(int curr) {
path.push_back(curr);
if (curr == 0) {//PBMC
int need = 0, back = 0;
for (int i = path.size() - 1; i >= 0; --i) {
int sta = path[i];
int bias = 0 - station[sta];
if (bias > 0) {
if (back >= bias) {
back -= bias;
} else {
need += bias - back;
back = 0;
}
} else {
back += -bias;
}
}
if (need < min_need) {
min_need = need;
min_back = back;
best_path = path;
} else if (need == min_need && back < min_back) {
min_back = back;
best_path = path;
}
path.pop_back();
return;
}
for (int i = 0; i < pre[curr].size(); ++i) {
dfs(pre[curr][i]);
}
path.pop_back();
}
int main() {
scanf("%d%d%d%d", &mmax, &nn, &target, &mm);
int perfect = mmax / 2;
for (int i = 1; i <= nn; ++i) {
scanf("%d", &station[i]);
station[i] -= perfect;
}
int u, v, t;
for (int j = 0; j < mm; ++j) {
scanf("%d%d%d", &u, &v, &t);
graph[u].push_back(make_pair(v, t));
graph[v].push_back(make_pair(u, t));
}
station[0] = 0;
dijkstra(0);
dfs(target);
printf("%d 0", min_need);
for (int k = best_path.size() - 2; k >= 0; --k) {
printf("->%d", best_path[k]);
}
printf(" %d\n", min_back);
return 0;
}