Keras学习(4)——第一个回归

回归问题与分类问题的区别主要是y值不是离散的类别,而是连续的变量;从模型角度看,两者并无本质区别,分类问题无非是把回归的结果用激活函数离散化成了类别。

1. 分步搭建

  • 数据载入

本例我们采用回归问题经典数据集-波士顿房价数据集;同样Scikit-Learn自带该数据集;需要注意的是,回归数据集是不存在类别名target_names的。

from sklearn.datasets import load_boston
data_set = load_boston()
x_names = data_set.feature_names
print(x_names)
x = data_set.data
y = data_set.target
  • 定义模型

这里定义的模型具有一个输入层、一个隐藏层、一个输出层,神经元个数分别为13、26、1。输入层的神经元个数必须为输入特征维度,输出层的神经元个数在回归问题中固定为1,输出层不要定义激活函数。

from keras.models import Sequential
model = Sequential()
from keras.layers import Dense
model.add(Dense(units=26, input_dim=13, activation='relu'))
model.add(Dense(units=1))
  • 编译模型

回归问题的损失函数有均方误差mse、平均绝对误差mae、均方对数误差msle等,注意Keras里没有直接提供均方根误差等带‘根’的误差,需要自己去开根号算。模型度量标准一般和损失函数设同样的值。

model.compile(loss='msle', optimizer='adam', metrics=['msle'])
  • 训练模型
model.fit(x, y, epochs=100, batch_size=10)
  • 评估模型

由于模型度量标准和损失函数设置了同样的值,所以这里result[1]和result[0]应该是同样的值,都是均方对数误差。

result = model.evaluate(x, y)
print(result[1])
  • 模型预测

回归模型只有一个预测函数predict,打印前三行看一下格式。

result = model.predict(x)
print(result[0:3])
[[32.423107]
 [27.864511]
 [32.159573]]

2. 完整代码

# /usr/bin/env python
from sklearn.datasets import load_boston
from keras.models import Sequential
from keras.layers import Dense


def load_data():
    data_set = load_boston()
    x_names = data_set.feature_names
    x = data_set.data
    y = data_set.target
    return x, y, x_names


def create_model(input_dim, units_list, activation='relu', optimizer='adam'):
    model = Sequential()
    model.add(Dense(units=units_list[0], input_dim=input_dim, activation=activation))
    for units in units_list[1:]:
        model.add(Dense(units=units, activation=activation))
    model.add(Dense(units=1))

    model.compile(loss='msle', optimizer=optimizer, metrics=['msle'])

    model.summary()

    return model


def main():
    x, y, x_names = load_data()
    print(x_names)

    model = create_model(input_dim=13, units_list=[26, 13])

    model.fit(x, y, epochs=100, batch_size=10)

    result = model.evaluate(x, y)
    print(result[1])

    result = model.predict(x)
    print(result[0:3])


if __name__ == '__main__':
    main()

至此,三个基本模型讲解完毕,下一节将抛开模型本身,重点讲一下机器学习中常见的各种操作~

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。

推荐阅读更多精彩内容

  • 机器学习术语表 本术语表中列出了一般的机器学习术语和 TensorFlow 专用术语的定义。 A A/B 测试 (...
    yalesaleng阅读 1,996评论 0 11
  • https://developers.google.com/machine-learning/crash-cour...
    iOSDevLog阅读 2,686评论 1 11
  • 文章主要分为:一、深度学习概念;二、国内外研究现状;三、深度学习模型结构;四、深度学习训练算法;五、深度学习的优点...
    艾剪疏阅读 21,921评论 0 58
  • 月亮咖啡屋的第一夜 大概从去年开始,丧文化逐渐流行起来。作为90后的一员,我也无可避免地加入了丧丧大军,喝着一碗又...
    月亮咖啡屋阅读 1,499评论 0 0
  • 环境准备 其他信息:[root@flume ~]# uname -r2.6.32-358.el6.x86_64[r...
    57山本无忧阅读 1,284评论 0 0