import tensorflow as tf
import numpy as np
import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
'''
#Save to file
#remeber to define the same dtype and shape when restore
W = tf.Variable([[1,2,3],[1,2,3]],dtype=tf.float32,name = 'weights')
b = tf.Variable([[1,2,3]],dtype=tf.float32,name ='biases')
init = tf.global_variables_initializer()
saver = tf.train.Saver()
with tf.Session() as sess:
sess.run(init)
save_path = saver.save(sess,"E:/Program Files/Machine Learning/node/my_net/save_net.ckpt")
print("Save to path:",save_path)
'''
#先建立W,b的容器
W = tf.Variable(np.arange(6).reshape((2,3)),dtype=tf.float32,name = "weights")
b = tf.Variable(np.arange(3).reshape((1,3)),dtype=tf.float32,name = "biases")
#这里不需要初始化步骤init = tf.global_variables_initializer()
saver = tf.train.Saver()
with tf.Session() as sess:
#提取变量
saver.restore(sess,"my_net/save_net.ckpt")
print("weights:",sess.run(W))
print("biases:",sess.run(b))