tensorflow saver

import tensorflow as tf
import numpy as np

# Save to file
# remember to define the same dtype and shape when restore
W = tf.Variable([[1,2,3],[3,4,5]],dtype=tf.float32,name='weights')
b = tf.Variable([[1,2,3]],dtype=tf.float32,name='biases')

init = tf.initialize_all_variables()

saver = tf.train.Saver()

with tf.Session() as sess:
    sess.run(init)
    save_path = saver.save(sess,"my_net/save_net.ckpt")
    print("Save to path: ", save_path)

# restore variables
#redefine the same shape and same type for your variables
W = tf.Variable(np.arange(6).reshape((2,3)),dtype=tf.float32,name="weights")
b = tf.Variable(np.arange(3).reshape((1,3)),dtype=tf.float32,name="biases")

# not need init step
saver = tf.train.Saver()
with tf.Session() as sess:
    saver.restore(sess,"my_net/save_net.ckpt")
    print("weights: ",sess.run(W))
    print("biases: ",sess.run(b))

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。

推荐阅读更多精彩内容