六:提升数据可视化的表现效果(20191216-22)

0x00 内容

如何提升数据可视化的表现效果

主要探讨一下,哪些方面的改进和有益实践,可以使我们的数据可视化的呈现效果更加具有表现力。

目标有两个:

了解哪些方面的因素,会对数据可视化的呈现效果有影响;

熟悉数据层面/非数据层面提升可视化效果的实操经验,并能在工作中实际应用这些经验;

0x01 提升可视化效果的经验总结

之前的文章中,了解过根据数据可视化的目的、数据关系和特征,去选择合适的图表类型,进入可视化的设计。从大的方向上来说,影响数据可视化最终效果的因素,分为两个层面:

一是非数据层面

不受数据影响的情况,是我们在可视化设计阶段就可以把控的:比如说页面的整体布局、图表的辅助元素设计(包含网格线、背景、颜色的选取等)、交互的设计等。

二是数据层面

受数据影响可视化效果的情况一般包括:数据分布不均匀,存在极端值;某一维度下的属性值过多,信息繁杂不够聚焦;不同层级的,数据量级差异较大;数据条目较多等。以上这些情况的存在,可视化映射之后,就可能体现为,比如说某个柱形条的长度过长,饼图扇区的个数过多等,从而使可视化的最终效果不如人意。

从以上两个层面,来总结提升可视化效果的一些经验,从而使数据信息的传达更聚焦有效,可视化作品的视觉呈现更加美观。

0x02 非数据层面

2.1.布局要强调最重要的数据信息,将用户注意力集中在可视化结果的最重要区域

进行可视化设计时,需要根据用户关注的重点数据,对可视化结果的重要性和优先级进行排序。通过对可视化空间的合理布局设计,将用户的注意力集中到可视化结果中最重要的一个或几个区域上。

通常情况下,用户的视觉中心,是位于整个页面的上方和中心区域。如果只有一个重点,放在最显眼的位置,如果有几个重点,尽量集中放置,吸引视觉焦点。除了通过重要信息的位置摆放来吸引用户视觉焦点,还可以通过突出的颜色编码来抓住用户的注意力。

2.2.图表设计要隐藏不必要元素,弱化辅助元素

在我们进行图表绘制时,需要去掉无意义的背景色填充和颜色区分,弱化网格线突出真正重要的数据信息。虽然,网格线或者颜色映射可以辅助我们理解可视化图表中的信息,但是如果过于凸显,视觉上会显得杂乱、没有主次,干扰到你真正想展示的信息。对于这类元素,应该尽量隐藏和弱化。

2.3.交互操作要具有直观性、易理解性

一方面,图表中柱形条或趋势点等都代表实际的数据,但是为了可视化作品的简洁和美观,通常情况下,这些数据标签都会被隐藏;另一方面,由于人们查看数据的习惯是,先看总体和趋势再看局部和细节。这两个方面的原因,要求可视化产品,需要提供给用户一系列的交互手段,来让用户按照自己的意图和关注点去探索数据。

常见的交互方式有:

1)移动和缩放:当前空间只能显示有限的数据时,或者需要关注局部数据时,可以使用移动和缩放。

一般情况下,移动和缩放是同时使用的两个交互动作。对于移动而言,如果当前显示空间没有把数据展示全,需要把后一数据条露出一部分,指引用户可以进行移动操作;对于缩放而言,其目的一般是为了在更大的空间去查看局部的细节数据,一般也需要移动图表来配合。

2)悬停或点击

悬停的的目的,是为了查看某个对象的详细信息,通常会以弹窗或者「图例+数据」的形式展现。

点击的目的,通常是为了进行数据下钻,在这种情况下,需要通过设计传达给用户可以进行交互的信息,如鼠标悬停变手型、对象的颜色变化或者以文字指引等。

3)图表联动

多图表联动,是可视化中比较常见的一种交互方式,图表联动的前提条件是多个图表的指标含有共同的维度属性,所以当聚焦于某个图表的某一维度下的属性值时,其他图表会联动变化。

其数据格式通常如下:按维度1中的属性值聚合,可以得到左侧的柱状图对应的数据;按维度2中的属性值聚合,可以得到右侧的饼图对应的数据。

0x03 数据层面

3.1.当数据项较多时,需要精简数据项,突出重点

比例型分类数据,分类项建议保持在5~7个

比例型分类数据的可视化方式有:饼图、圆环图、百分比堆叠柱状图、百分比堆叠面积图等,其目的是为了展示个体分类项和总体之间的比例关系。

当需要按照某一个维度进行分组时,若该维度的属性值数目较多,那么就需要对属性值进行重新的归类和分组,通常的做法是,保留占比或实际值TOP5的分类项,剩余分类归为【其他】。

柱状图数据条过多时,保留头部和尾部

当需要用柱状图来对数据进行排行时,若数据条目较多,此时建议保留头部和尾部,中间的可以以省略号带过或者折叠起来,放大时再展开。头部和尾部的具体数目,可以依据具体需要来定,比如前5名和后5名、前10名和后3名等。

3.2.对于趋势图,若趋势不明显时,坐标轴数值可以不从0开始

当数据差异较小,导致折线的波动范围比较小,走势起伏不明显,此时如果为了更清楚看到数据的波动情况,坐标轴起始数值可以不从0开始,但是此时需要在页面提示用户,否则用户会误以为波动很大。

虽然,趋势图的主要目的,是查看数据的态势和波动规律,设置坐标轴不从0开始,可以更清晰的看到数据的起伏波动。但是,同时会给用户带来理解的成本,也有夸大差异的嫌疑,因此,不建议频繁使用。注意:柱状图的坐标轴起点,必须从0开始,否则柱形条的高度就不能代表数据间的差异。

3.3.当排行数据的类别名称较长时,可以用条形图替换柱状图

当类别名称太长时,虽然斜放可以避免重叠,但歪着头查看内容,和用户阅读的视觉习惯不符,此时可以考虑把柱条横向放置,把类别的名称置于柱条空隙之间或者柱形条左侧。

3.4.坐标轴需要做对应的单位转化

图表坐标轴的数值,受数据的大小影响,当数据较大时,一方面将坐标轴数值单位转化为我们熟知的K、W、M、亿需要一定的反应时间,另一方面较大的数值也会占用有限的可视化空间。因此,建议,在一个数据可视化平台内部,需要建立一套公共的单位转化规则,保证图表坐标轴单位转化规则的一致性。具体做法如下:

注意:一个图表中,坐标轴的数值单位需保持一致,一般是以最大数值的单位作为整个坐标轴的统一单位。

0xFF 总结

总结:

非数据层面:

   布局需要凸显和强调最重要的信息;

    弱化或隐藏图表设计中的辅助元素

    通过交互来给予用户探索数据的权利;

数据层面:

    精简数据项,突出重点;

    趋势图坐标轴可以不从0开始,但是要慎用;

    系列名称较长时,需用条形图,横向摆放系列名称;

    确立统一规则,对图表坐标轴数值进行单位转化;

参考阅读:

1.《如何优雅的选择数据图表:提升可视化效果的经验总结

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,692评论 6 501
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,482评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,995评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,223评论 1 292
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,245评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,208评论 1 299
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,091评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,929评论 0 274
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,346评论 1 311
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,570评论 2 333
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,739评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,437评论 5 344
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,037评论 3 326
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,677评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,833评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,760评论 2 369
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,647评论 2 354

推荐阅读更多精彩内容