RedisTemplate批量操作

RedisTemplate批量添加操作教程,利用pipeline批量操作;multiSet()批量操作;for循环批量操作

一、使用pipeline的好处

了解redis的小伙伴都知道,redis是一个高性能的单线程的key-value数据库。它的执行过程为:

(1)发送命令-〉(2)命令排队-〉(3)命令执行-〉(4)返回结果

如果我们使用redis进行批量插入数据,正常情况下相当于将以上四个步骤批量执行N次。(1)和(4)称为Round Trip Time(RTT,往返时间)。在一条简单指令中,往往(1)(4)步骤之和大过于(2)(3)步骤之和,如何进行优化?Redis提供了pipeline管道机制,它能将一组Redis命令进行组装,通过一次RTT传输给Redis,并将这组Redis命令的执行结果按顺序返回给客户端。

优缺点总结:

  • 1、性能对比:multiSet()>pipeline管道>普通for循环set
  • 2、扩展性强,可以支持设置失效时间。multiSet()不支持失效时间的设置

二、批量操作的工具类

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.dao.DataAccessException;
import org.springframework.data.redis.connection.RedisConnection;
import org.springframework.data.redis.connection.RedisStringCommands;
import org.springframework.data.redis.core.RedisCallback;
import org.springframework.data.redis.core.RedisTemplate;
import org.springframework.data.redis.core.types.Expiration;
import org.springframework.data.redis.serializer.RedisSerializer;
import org.springframework.stereotype.Component;

import java.util.List;
import java.util.Map;

/**
 * @author: huangyibo
 * @Date: 2022/6/23 16:15
 * @Description:
 */

@Component
public class BatchRunRedisUtil {
    
    
    @Autowired
    private RedisTemplate<String, Object> stringRedisTemplate;
    

    /**
     * 批量添加
     * @param map
     */
    public void batchSet(Map<String, String> map) {
        stringRedisTemplate.opsForValue().multiSet(map);
    }
    

    /**
     * 批量添加 并且设置失效时间
     * @param map
     * @param seconds
     */
    public void batchSetOrExpire(Map<String, String> map, Long seconds) {
        RedisSerializer<String> serializer = stringRedisTemplate.getStringSerializer();
        stringRedisTemplate.executePipelined(new RedisCallback<String>() {
            @Override
            public String doInRedis(RedisConnection connection) throws DataAccessException {
                map.forEach((key, value) -> {
                    connection.set(serializer.serialize(key), serializer.serialize(value), Expiration.seconds(seconds), RedisStringCommands.SetOption.UPSERT);
                });
                return null;
            }
        }, serializer);
    }
    

    /**
     * 批量获取
     * @param list
     * @return
     */
    public List<Object> batchGet(List<String> list) {
        List<Object> objectList = stringRedisTemplate.opsForValue().multiGet(list);
        return objectList;
    }
    

    /**
     * Redis批量Delete
     * @param list
     */
    public void batchDelete(List<String> list) {
        stringRedisTemplate.delete(list);
    }

}

三、性能测试

通过for循环来向redis插入数据,通过pipeline插入数据,通过使用redisTemplate.opsForValue().multiSet(map)插入数据查看执行时间。

import com.demo.util.BatchRunRedisUtil;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.CommandLineRunner;
import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.data.redis.core.RedisTemplate;

import java.util.HashMap;
import java.util.Map;

@SpringBootApplication
public class DemoApplication implements CommandLineRunner {

    public static void main(String[] args) {
        SpringApplication.run(DemoApplication.class, args);
    }

    @Autowired
    private RedisTemplate<String, Object> stringRedisTemplate;

    @Autowired
    private BatchRunRedisUtil batchRunRedisUtil;

    @Override
    public void run(String... args) throws Exception {
        //for循环批量添加
        long startTime = System.currentTimeMillis();
        for (int i = 0; i < 100000; i++) {
            stringRedisTemplate.opsForValue().set("aaa" + i, "a", 60);
        }
        long endTime = System.currentTimeMillis();
        System.out.println("普通set消耗" + (endTime - startTime) + "毫秒");
        //利用pipeline批量操作
        long startTime2 = System.currentTimeMillis();
        Map map = new HashMap(100000);
        for (int i = 0; i < 100000; i++) {
            map.put("bbb" + i, "b");
        }
        batchRunRedisUtil.batchSetOrExpire(map, 60l);
        long endTime2 = System.currentTimeMillis();
        System.out.println("管道set消耗" + (endTime2 - startTime2) + "毫秒");
        //multiSet()批量操作
        long startTime3 = System.currentTimeMillis();
        Map map2 = new HashMap(100000);
        for (int i = 0; i < 100000; i++) {
            map2.put("ccc" + i, "b");
        }
        batchRunRedisUtil.batchSet(map2);
        long endTime3 = System.currentTimeMillis();
        System.out.println("批量set消耗" + (endTime3 - startTime3) + "毫秒");
    }

}

在本机分别执行了三次结果:

普通set消耗9010毫秒
管道set消耗1606毫秒
批量set消耗18毫秒
普通set消耗8228毫秒
管道set消耗1059毫秒
批量set消耗14毫秒
普通set消耗8365毫秒
管道set消耗1092毫秒
批量set消耗13毫秒

通过比较发现,逐条执行时间是pipeline执行平均时间的8倍!这是在本机测试的结果,理论上,客户端与服务端的网络延迟越大,性能体能越明显。

当然,pipeline性能提升虽然明显,但是每次管道里命令个数太多的话,也会造成客户端响应时间变久,网络传输阻塞。最好还是根据业务情况,将大的pipeline拆分成多个小的pipeline来执行。

如果不用设置失效时间的话最好使用redisTemplate.opsForValue().multiSet(map)方法来添加

参考:
https://blog.csdn.net/weixin_41677422/article/details/108626587

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,692评论 6 501
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,482评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,995评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,223评论 1 292
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,245评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,208评论 1 299
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,091评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,929评论 0 274
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,346评论 1 311
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,570评论 2 333
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,739评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,437评论 5 344
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,037评论 3 326
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,677评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,833评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,760评论 2 369
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,647评论 2 354

推荐阅读更多精彩内容