NCL--两种剖面加地形的方法

好看的地形与不好看的地形

1、不好看但精准的地形

利用地形数据,低于地形的地方填色

优点:精确

缺点:使用不同分辨率数据时,需要进行调整


function read_height_data(topo_file)

local nlat,nlon,topo_file,lat,lon

begin

  nlat = 2160

  nlon = 4320

 setfileoption("bin","ReadByteOrder","BigEndian")

  elev = tofloat(cbinread(topo_file,(/nlat,nlon/),"short"))


  lat = fspan(90,-90,nlat)

  lon = fspan(0,360,nlon)

  lat!0 = "lat"

  lon!0 = "lon"

  lat@units = "degrees_north"

  lon@units = "degrees_east"

  lat&lat = lat

  lon&lon = lon

  elev!0 = "lat"

  elev!1 = "lon"

  elev&lat = lat

  elev&lon = lon


  return(elev)

end

;; Read terrain data from a C binary file

  elev = read_height_data("ETOPO5.DAT")

;; Convert terrain data from units "m" to "hPa", it is described as a high pressure formula

  elev = 1013.25*(1-elev*0.0065/288.15)^5.25145

;; The purpose of the interpolation is to make terrain data and variable data have the same resolution

  lat = fspan(-90,90,73)

  lon = fspan(lon_1,lon_2,toint((lon_2-lon_1)/2.5+1))

  geog = area_hi2lores_Wrap(elev&lon,elev&lat,elev,True,1,lon,lat,False)

  geogsection = geog({stdlat},:)

;  geogsection = geog(:,{stdlon})

;; Determine the terrain

  topo2d = conform(temp,geogsection,1)

  high2d = conform(temp,temp&lev,0)

  tMask= temp

; tMask@_FillValue = 99999

  tMask = (/mask(temp,topo2d.lt.high2d,False)/)

  plot = gsn_csm_pres_hgt(wks, tMask, res )


2、好看的地形

利用地形数据画出地形后直接overlay在原图上。

优点:简单易操作,不受数据分辨率影响

缺点:


 dixing = gsn_csm_pres_hgt(wks,dx({levb:levt},{lat_3},{lon_1:lon_2}),resa)

 plot = gsn_csm_pres_hgt(wks, temp({levb:levt},:), res)

overlay(plot,dixing)

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 217,826评论 6 506
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,968评论 3 395
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 164,234评论 0 354
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,562评论 1 293
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,611评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,482评论 1 302
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,271评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,166评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,608评论 1 314
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,814评论 3 336
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,926评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,644评论 5 346
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,249评论 3 329
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,866评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,991评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,063评论 3 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,871评论 2 354

推荐阅读更多精彩内容