深度学习风格迁移

姓名:丁新宇

学号:22011211074

学院:通信工程学院

【嵌牛鼻子】风格迁移 深度学习

【嵌牛正文】

1. 神经风格迁移之前的风格迁移方法

1) 基于笔划的渲染(Stroke-based rendering SBR)

基于笔划的渲染是指在数字画布上增加虚拟笔划以渲染具有特定样式的图片的方法。应用场景大多限定在油画、水彩、草图等,不够灵活。

2) 图像类比方法

图像类比旨在学习一对源图像和目标图像之间的映射,以监督学习的方式定位风格化图像。图像类比训练集包括成对的未校正的源图像和具有特定样式的相应的程式化图像。类比方法效果尚可,难点在于实际中很难获得成对的训练数据。

3) 图像滤波方法

考虑到图像风格迁移实际上是一个图像简化和抽象的过程,图像滤波方法采用一些组合的图像滤波器(如双边和高斯滤波器等)来渲染给定的图片。

4) 纹理合成方法

纹理是图像中重复存在的视觉图案。纹理合成是在源纹理图像中增加相似纹理的过程。这些基于纹理合成的算法仅利用低级图像特征,限制了它们的性能。

2. 神经风格迁移(NTS)分类

目前的NST方法分为两类:基于在线图像优化的慢速神经网络方法和基于在线模型优化的快速神经网络方法。

第一类通过逐步优化图像来实现风格迁移和图像重建。第二类优化了生成离线模型并使用单个前向传递产生风格化图像,这实际上利用了快速图像重建技术的思想。

1). 基于在线图像优化的慢速神经网络方法

在线图像优化的基本思想是分别从内容和风格图像中提取内容和风格特征,并将这两个特征重新组合成为目标图像,之后在线迭代地重建目标图像,依据是生成图像与内容和风格图像之间的差异。

内容损失函数定义为两者通过VGG网络提取的特征之间的欧式距离。

风格损失函数定义为两者通过VGG网络提取的特征之间的格拉姆矩阵的欧氏距离。

对于一个深层网络,浅层网络提取的是低维特征如颜色等,深层网络提取的是高维的语义内容信息。所以风格损失经常对比的是浅层网络特征,内容损失对比的是深层网络特征。使用VGG-19网路,一个推荐的选择是内容损失取1到5层的5个特征图,风格损失取第4层特征图。

另一点比较重要的是经常会添加一个整体差异loss,用来平滑生成图像,使结果更自然。

3. 神经风格迁移研究难点

1. 三方面的权衡

速度、灵活性、转换质量三方面的权衡

2. 可解释的神经风格迁移

CNN的黑盒子特性使得过程不可控,很难实现更精细的控制。

3. 抗干扰性能

如果在图像上加一些干扰,网络的结果可能变得不可接受。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,923评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,154评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,775评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,960评论 1 290
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,976评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,972评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,893评论 3 416
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,709评论 0 271
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,159评论 1 308
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,400评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,552评论 1 346
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,265评论 5 341
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,876评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,528评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,701评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,552评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,451评论 2 352

推荐阅读更多精彩内容