volatile关键字的作用、原理

volatile关键字的作用、原理

在只有双重检查锁,没有volatile的懒加载单例模式中,由于指令重排序的问题,我确实不会拿到两个不同的单例了,但我会拿到“半个”单例

而发挥神奇作用的volatile,可以当之无愧的被称为Java并发编程中“出现频率最高的关键字”,常用于保持内存可见性和防止指令重排序。

保持内存可见性

内存可见性(Memory Visibility):所有线程都能看到共享内存的最新状态。

失效数据

以下是一个简单的可变整数类:

public class MutableInteger {
private int value;
public int get(){
return value;
}
public void set(int value){
this.value = value;
}
}

MutableInteger不是线程安全的,因为getset方法都是在没有同步的情况下进行的。如果线程1调用了set方法,那么正在调用的get的线程2可能会看到更新后的value值,也可能看不到

解决方法很简单,将value声明为volatile变量:

private volatile int value;

神奇的volatile关键字

神奇的volatile关键字解决了神奇的失效数据问题。

Java变量的读写

Java通过几种原子操作完成工作内存主内存的交互:

  1. lock:作用于主内存,把变量标识为线程独占状态。
  2. unlock:作用于主内存,解除独占状态。
  3. read:作用主内存,把一个变量的值从主内存传输到线程的工作内存。
  4. load:作用于工作内存,把read操作传过来的变量值放入工作内存的变量副本中。
  5. use:作用工作内存,把工作内存当中的一个变量值传给执行引擎。
  6. assign:作用工作内存,把一个从执行引擎接收到的值赋值给工作内存的变量。
  7. store:作用于工作内存的变量,把工作内存的一个变量的值传送到主内存中。
  8. write:作用于主内存的变量,把store操作传来的变量的值放入主内存的变量中。

volatile如何保持内存可见性

volatile的特殊规则就是:

  • read、load、use动作必须连续出现
  • assign、store、write动作必须连续出现

所以,使用volatile变量能够保证:

  • 每次读取前必须先从主内存刷新最新的值。
  • 每次写入后必须立即同步回主内存当中。

也就是说,volatile关键字修饰的变量看到的随时是自己的最新值。线程1中对变量v的最新修改,对线程2是可见的。

防止指令重排

在基于偏序关系Happens-Before内存模型中,指令重排技术大大提高了程序执行效率,但同时也引入了一些问题。

一个指令重排的问题——被部分初始化的对象

懒加载单例模式和竞态条件

一个懒加载单例模式实现如下:

<figure class="highlight java" style="box-sizing: border-box; display: block; margin: 10px 0px; background: rgb(39, 40, 34); padding: 10px; overflow: auto; color: rgb(255, 255, 255); font-size: 0.9em; line-height: 22.4px; border-radius: 4px;">

|

class Singleton {
private static Singleton instance;
private Singleton(){}
public static Singleton getInstance() {
if ( instance == null ) { //这里存在竞态条件
instance = new Singleton();
}
return instance;
}
}

竞态条件会导致instance引用被多次赋值,使用户得到两个不同的单例。

DCL和被部分初始化的对象

为了解决这个问题,可以使用synchronized关键字将getInstance方法改为同步方法;但这样串行化的单例是不能忍的。所以我猿族前辈设计了DCL(Double Check Lock,双重检查锁)机制,使得大部分请求都不会进入阻塞代码块:

class Singleton {
private static Singleton instance;
private Singleton(){}
public static Singleton getInstance() {
if ( instance == null ) { //当instance不为null时,仍可能指向一个“被部分初始化的对象”
synchronized (Singleton.class) {
if ( instance == null ) {
instance = new Singleton();
}
}
}
return instance;
}
}

“看起来”非常完美:既减少了阻塞,又避免了竞态条件。不错,但实际上仍然存在一个问题——当instance不为null时,仍可能指向一个"被部分初始化的对象"

问题出在这行简单的赋值语句:

instance = new Singleton();

它并不是一个原子操作。事实上,它可以”抽象“为下面几条JVM指令:

memory = allocate(); //1:分配对象的内存空间
initInstance(memory); //2:初始化对象
instance = memory; //3:设置instance指向刚分配的内存地址

上面操作2依赖于操作1,但是操作3并不依赖于操作2,所以JVM可以以“优化”为目的对它们进行重排序,经过重排序后如下:

memory = allocate(); //1:分配对象的内存空间
instance = memory;//3:设置instance指向刚分配的内存地址(此时对象还未初始化)
ctorInstance(memory); //2:初始化对象

可以看到指令重排之后,操作 3 排在了操作 2 之前,即引用instance指向内存memory时,这段崭新的内存还没有初始化——即,引用instance指向了一个”被部分初始化的对象”。此时,如果另一个线程调用getInstance方法,由于instance已经指向了一块内存空间,从而if条件判为false,方法返回instance引用,用户得到了没有完成初始化的“半个”单例。

解决这个该问题,只需要将instance声明为volatile变量:

private static volatile Singleton instance;

也就是说,在只有DCL没有volatile的懒加载单例模式中,仍然存在着并发陷阱。我确实不会拿到两个不同的单例了,但我会拿到“半个”单例(未完成初始化)。
然而,许多面试书籍中,涉及懒加载的单例模式最多深入到DCL,却只字不提volatile。这“看似聪明”的机制,曾经被我广大初入Java世界的猿胞大加吹捧——我在大四实习面试跟谁学的时候,也得意洋洋的从饱汉、饿汉讲到Double Check,现在看来真是傻逼。对于考查并发的面试官而言,单例模式的实现就是一个很好的切入点,看似考查设计模式,其实期望你从设计模式答到并发和内存模型。

volatile如何防止指令重排

volatile关键字通过“内存屏障”来防止指令被重排序。

为了实现volatile的内存语义,编译器在生成字节码时,会在指令序列中插入内存屏障来禁止特定类型的处理器重排序。然而,对于编译器来说,发现一个最优布置来最小化插入屏障的总数几乎不可能,为此,Java内存模型采取保守策略。

下面是基于保守策略的JMM内存屏障插入策略:

  • 在每个volatile写操作的前面插入一个StoreStore屏障。
  • 在每个volatile写操作的后面插入一个StoreLoad屏障。
  • 在每个volatile读操作的后面插入一个LoadLoad屏障。
  • 在每个volatile读操作的后面插入一个LoadStore屏障。

进阶

在一次回答上述问题时,忘记了解释一个很容易引起疑惑的问题:

如果存在这种重排序问题,那么synchronized代码块内部不是也可能出现相同的问题吗?

即这种情况:

class Singleton {
...
if ( instance == null ) { //可能发生不期望的指令重排
synchronized (Singleton.class) {
if ( instance == null ) {
instance = new Singleton();
System.out.println(instance.toString()); //程序顺序规则发挥效力的地方
}
}
}
...
}

难道调用instance.toString()方法时,instance也可能未完成初始化吗?

首先还请放宽心,synchronized代码块内部虽然会重排序,但不会在代码块的范围内导致线程安全问题

Happens-Before内存模型和程序顺序规则

程序顺序规则:如果程序中操作A在操作B之前,那么线程中操作A将在操作B之前执行。

前面说过,只有在Happens-Before内存模型中才会出现这样的指令重排序问题。Happens-Before内存模型维护了几种Happens-Before规则,程序顺序规则最基本的规则。程序顺序规则的目标对象是一段程序代码中的两个操作A、B,其保证此处的指令重排不会破坏操作A、B在代码中的先后顺序,但与不同代码甚至不同线程中的顺序无关

因此,在synchronized代码块内部,instance = new Singleton()仍然会指令重排序,但重排序之后的所有指令,仍然能够保证在instance.toString()之前执行。进一步的,单线程中,if ( instance == null )能保证在synchronized代码块之前执行;但多线程中,线程1中的if ( instance == null )却与线程2中的synchronized代码块之间没有偏序关系,因此线程2中synchronized代码块内部的指令重排对于线程1是不期望的,导致了此处的并发陷阱。

类似的Happens-Before规则还有volatile变量规则监视器锁规则等。程序猿可以借助(Piggyback)现有的Happens-Before规则来保持内存可见性和防止指令重排。

注意点

上面简单讲解了volatile关键字的作用和原理,但对volatile的使用过程中很容易出现的一个问题是:

错把volatile变量当做原子变量。

出现这种误解的原因,主要是volatile关键字使变量的读、写具有了“原子性”。然而这种原子性仅限于变量(包括引用)的读和写,无法涵盖变量上的任何操作,即:

  • 基本类型的自增(如count++)等操作不是原子的。
  • 对象的任何非原子成员调用(包括成员变量成员方法)不是原子的。

如果希望上述操作也具有原子性,那么只能采取锁、原子变量更多的措施。

总结

综上,其实volatile保持内存可见性和防止指令重排序的原理,本质上是同一个问题,也都依靠内存屏障得到解决。更多内容请参见JVM相关书籍。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,047评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,807评论 3 386
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,501评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,839评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,951评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,117评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,188评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,929评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,372评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,679评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,837评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,536评论 4 335
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,168评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,886评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,129评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,665评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,739评论 2 351

推荐阅读更多精彩内容

  • 在只有双重检查锁,没有volatile的懒加载单例模式中,由于指令重排序的问题,我确实不会拿到两个不同的单例了,但...
    猴子007阅读 921评论 0 6
  • 从三月份找实习到现在,面了一些公司,挂了不少,但最终还是拿到小米、百度、阿里、京东、新浪、CVTE、乐视家的研发岗...
    时芥蓝阅读 42,220评论 11 349
  • volatile关键字经常在并发编程中使用,其特性是保证可见性以及有序性,但是关于volatile的使用仍然要小心...
    Ruheng阅读 10,043评论 40 135
  • (一) 十二圈,不多不少。熊小姐轻轻抽出银质的小勺,慢条斯理地搁在了骨瓷的杯盘中,“叮”的一声有如人间仙乐。 咖啡...
    第一千零一只太阳阅读 408评论 0 0
  • 大家晚上好。我是思楠。周三的晚上,我来了。和平常一样,分享自己有关于职业规划的东西 谢谢大家的回应。今晚我分享的主...
    思楠生涯规划阅读 183评论 0 0