向量空间的和与集合的并

《线性代数应该这样学》习题2.C 17.

上面的题目很容易就能找到一个反例,如U_1=<(1,0,0)>, U_2=<(0,1,0)>, U_3=<(1,1,0)>

在此,我想记录一点小想法:关于为什么公式不成立。

我们知道对于集合有容斥原理,
\text{card}(A \cup B) = \text{card}(A) + \text{card}(B) - \text{card}(A \cap B)
从上述两个集合的公式加上集合的运算定律也可以推得三个集合的公式,
\begin{align*} \text{card}(A \cup B \cup C) &= \text{card}(A \cup B)+ \text{card}(C) - \text{card}((A \cup B) \cap C) \\ &= \text{card}(A) + \text{card}(B) - \text{card}(A \cap B) + \text{card}(C) - \text{card}((A \cap C)\cup (B \cap C)) \\ &= \text{card}(A) + \text{card}(B) - \text{card}(A \cap B) + \text{card}(C) - \text{card}(A \cap C) -\text{card}(B \cap C) + \text{card}((A \cap C) \cap (B \cap C) ) \\ &= \text{card}(A) + \text{card}(B) + \text{card}(C) - \text{card}(A \cap B)- \text{card}(A \cap C) -\text{card}(B \cap C) + \text{card}(A \cap B \cap C ) \end{align*}
如果我们草率的模仿上述过程推导三个向量空间的和的维数公式是不合适的。

这是因为上面用到了集合的运算定律:(A\cup B)\cap C=(A \cap C)\cup (B \cap C)等。但这些运算定律是争对交并补运算的,在子集/子空间的和运算中是没有这样的运算定律的。如,令A=U_1,B=U_2,C=U_3,衍生出的“运算定律”(A+B)\cap C=(A\cap C)+(B \cap C)显然是错误的。

归根结底,和运算与并运算仅仅是看起来相像。两个向量空间的和可以使得一个原本不在他们里面的某个元素,变得在他们的和空间里面;但是集合的并不能做到这样的事情。

©著作权归作者所有,转载或内容合作请联系作者
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。

推荐阅读更多精彩内容

  • 在大学学线性代数的时候,教材总是先从行列式开始的,期间又引入了诸如逆序数之类的奇怪的玩意。即便学完了东西还是挺多的...
    古剑诛仙阅读 5,859评论 0 6
  • 1.4 概率基础 本节介绍概率、随机变量、期望、方差等概率论的基础知识。 1.4.1 概率 概率是指一个事件出现(...
    hwdong阅读 431评论 0 0
  • 集合 集合是现代数学中一个非常重要的概念,在某些情况下又被称为类、族或者搜索。 但实际上,数学上的集合与计算机当中...
    帅气的昵称都有人用了阅读 900评论 0 0
  • 一个向量空间包括三块,基础集,两种二元运算,加法,标量乘。 暂且用实数域的符号表示,比较熟悉。 然后还必须满足一些...
    Obj_Arr阅读 2,185评论 0 0
  • 我是黑夜里大雨纷飞的人啊 1 “又到一年六月,有人笑有人哭,有人欢乐有人忧愁,有人惊喜有人失落,有的觉得收获满满有...
    陌忘宇阅读 8,605评论 28 53