阿里云自研大模型“通义千问”亮相,我们进行了深度实测

年初以来,AI大模型概念持续引发市场关注,相关上市公司股价持续上扬。在透露正在研发类ChatGPT对话机器人两个月后,阿里终于亮出了自己的研究成果,这也再度推高了中文大模型的热度。

4月7日中午,没有高调召开发布会,而是通过官方微信,阿里云宣布自研大模型“通义千问”正式开始邀请用户测试体验。据称,现阶段“通义千问”模型主要定向邀请企业用户进行体验测试。

观察者网也率先拿到了“通义千问”的首批测试资格,并对其进行了深度实测。

在测试中,“通义千问”提到,它是达摩院自主研发的超大规模语言模型,能够回答问题、创作文字,也能表达观点、撰写代码。

但这也间接说明,“通义千问”主攻文本生成,并没有文生图、图生文的多模态功能。

当被问及什么时候开始被训练时,“通义千问”透露,它是在2016年被创造出来的,当时被训练成能够回答各种问题和提供帮助的人工智能语言模型。

但它似乎对自己在哪里被训练的有点说不太清。

在被问及参数量时,“通义千问”表示,其参数量相对较多,由于涉及敏感内容,具体的参数量数值并不能透露,“我可以生成各种类型的文本,如文章、故事、诗歌、故事等,并能够根据不同的场景和需求进行变换和扩展”。

市场反应方面,今日(4月7日)港股没有开盘

不过A股的人工智能概念股,再度火热。ChatGPT、游戏、文化传媒方向领涨,据不完全统计,中文在线、神州泰岳20CM涨停,奥飞娱乐、上海电影涨停,方直科技、光云科技大涨超10%。

多角度测试,“通义千问”表现如何?

由于AI大模型擅长回答各种问题,观察者网也从多个角度对“通义千问”进行了测试。

比如,我们问它是否知道观察者网。“通义千问”表示,“是的,我知道观察者网。观察者网是一家致力于提供新闻和信息的新闻门户网站,它提供了大量的国内外新闻和深度分析,并致力于推动社会进步和改变。”

但“通义千问”好像并不能凭借简单指令生成商业宣传口号。

随后我们将话题转向体育领域。

被问道“梅西在阿根廷国家队进了几个球”,“通义千问”称,根据可靠的数据,梅西在阿根廷国家队的进球数量是很多的。不过由于“具体的进球数量数值,可能会因为时间的推移而有所变化”,“通义千问”婉拒了为我们提供准确答案的请求。

当被要求“生成一张打篮球的图片”,“通义千问”表示,作为文本AI模型,它没有能力生成图片。

这一点也证实了“通义千问”不具备多模态功能。

我们也让“通义千问”试图回答和自己其他大模型的能力对比问题。

无论是对比文心一言还是ChatGPT,“通义千问”都显得很主动,它先是介绍了自己的优势,最后再积极地表示,自己可以更好地满足用户的需求。

不过如果要求苛刻一点,不难发现,两个问题的答案有很多相似之处。

当被问及“怎么看待现在大模型的火热”?“通义千问”称,它认为大模型的火热是一个好现象,大模型可以帮助我们更好地理解世界,提高我们的工作效率,拓展我们的认知边界。但这也带来了一些问题,比如人工智能的伦理问题、隐私问题等。因此,我们需要认真思考如何在技术的发展中平衡安全、发展和责任。

这也验证了“通义千问”表达观点的功能。

最后的系列问题涵盖成语典故、诗词接龙、传统美食等,“通义千问”小小地翻车了几次。

例如它将东施效颦的东施,解释为“美女”,这不太符合不少人对这一典故的基本印象。在《庄子》等典籍中,对这个故事中“东施”一类的角色,描述也是“其里之丑人”。

在有关传统文化方面,“通义千问”没有正确给出“停车坐爱枫林晚”的下句。

对于“曹操什么时候三顾茅庐的”这样的“坑”,“通义千问”也未能识别提问者主动设置的“陷阱”。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,258评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,335评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,225评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,126评论 1 292
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,140评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,098评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,018评论 3 417
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,857评论 0 273
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,298评论 1 310
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,518评论 2 332
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,678评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,400评论 5 343
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,993评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,638评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,801评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,661评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,558评论 2 352

推荐阅读更多精彩内容