Prometheus、Metrics Server 与 Kubernetes 监控体系

Kubernetes 项目的监控体系曾经非常繁杂,在社区中也有很多方案。但这套体系发展到今天,已经完全演变成了以 Prometheus 项目为核心的一套统一的方案。

Prometheus 项目与 Kubernetes 项目一样,也来自于 Google 的 Borg 体系,它的原型系统,叫作 BorgMon,是一个几乎与 Borg 同时诞生的内部监控系统。而 Prometheus 项目的发起原因也跟 Kubernetes 很类似,都是希望通过对用户更友好的方式,将 Google 内部系统的设计理念,传递给用户和开发者。作为一个监控系统,Prometheus 项目的作用和工作方式,其实可以用如下所示的一张官方示意图来解释。

image.png

可以看到,Prometheus 项目工作的核心,是使用 Pull (抓取)的方式去搜集被监控对象的 Metrics 数据(监控指标数据),然后,再把这些数据保存在一个 TSDB (时间序列数据库,比如 OpenTSDB、InfluxDB 等)当中,以便后续可以按照时间进行检索。

有了这套核心监控机制, Prometheus 剩下的组件就是用来配合这套机制的运行。比如 Pushgateway,可以允许被监控对象以 Push 的方式向 Prometheus 推送 Metrics 数据。而 Alertmanager,则可以根据 Metrics 信息灵活地设置报警。当然, Prometheus 最受用户欢迎的功能,还是通过 Grafana 对外暴露出的、可以灵活配置的监控数据可视化界面。

有了 Prometheus 之后,我们就可以按照 Metrics 数据的来源,来对 Kubernetes 的监控体系做一个汇总了。

第一种 Metrics,是宿主机的监控数据。这部分数据的提供,需要借助一个由 Prometheus 维护的Node Exporter 工具。一般来说,Node Exporter 会以 DaemonSet 的方式运行在宿主机上。

其实,所谓的 Exporter,就是代替被监控对象来对 Prometheus 暴露出可以被“抓取”的 Metrics 信息的一个辅助进程。而 Node Exporter 可以暴露给 Prometheus 采集的 Metrics 数据, 也不单单是节点的负载(Load)、CPU 、内存、磁盘以及网络这样的常规信息,它的 Metrics 指标可以说是“包罗万象”,你可以查看这个列表来感受一下。

第二种 Metrics,是来自于 Kubernetes 的 API Server、kubelet 等组件的 /metrics API。除了常规的 CPU、内存的信息外,这部分信息还主要包括了各个组件的核心监控指标。比如,对于 API Server 来说,它就会在 /metrics API 里,暴露出各个 Controller 的工作队列(Work Queue)的长度、请求的 QPS 和延迟数据等等。这些信息,是检查 Kubernetes 本身工作情况的主要依据。

第三种 Metrics,是 Kubernetes 相关的监控数据。这部分数据,一般叫作 Kubernetes 核心监控数据(core metrics)。这其中包括了 Pod、Node、容器、Service 等主要 Kubernetes 核心概念的 Metrics。

容器相关的 Metrics 主要来自于 kubelet 内置的 cAdvisor 服务。在 kubelet 启动后,cAdvisor 服务也随之启动,而它能够提供的信息,可以细化到每一个容器的 CPU 、文件系统、内存、网络等资源的使用情况。

需要注意的是,这里提到的 Kubernetes 核心监控数据,其实使用的是 Kubernetes 的一个非常重要的扩展能力,叫作 Metrics Server。

而有了 Metrics Server 之后,用户就可以通过标准的 Kubernetes API 来访问到这些监控数据了。比如,下面这个 URL:

http://127.0.0.1:8001/apis/metrics.k8s.io/v1beta1/namespaces/<namespace-name>/pods/<pod-name>

当你访问这个 Metrics API 时,它就会为你返回一个 Pod 的监控数据,而这些数据,其实是从 kubelet 的 Summary API (即 <kubelet_ip>:<kubelet_port>/stats/summary)采集而来的。Summary API 返回的信息,既包括了 cAdVisor 的监控数据,也包括了 kubelet 本身汇总的信息。

需要指出的是, Metrics Server 并不是 kube-apiserver 的一部分,而是通过 Aggregator 这种插件机制,在独立部署的情况下同 kube-apiserver 一起统一对外服务的。这里,Aggregator APIServer 的工作原理,可以用如下所示的一幅示意图来表示清楚:

image.png

在理解了 Prometheus 关心的三种监控数据源,以及 Kubernetes 的核心 Metrics 之后,作为用户,你其实要做的就是将 Prometheus Operator 在 Kubernetes 集群里部署起来。然后,按照本篇文章一开始介绍的架构,把上述 Metrics 源配置起来,让 Prometheus 自己去进行采集即可。

最后,在具体的监控指标规划上,我建议你遵循业界通用的 USE 原则和 RED 原则。

其中,USE 原则指的是,按照如下三个维度来规划资源监控指标:

  1. 利用率(Utilization),资源被有效利用起来提供服务的平均时间占比;
  2. 饱和度(Saturation),资源拥挤的程度,比如工作队列的长度;
  3. 错误率(Errors),错误的数量。

而 RED 原则指的是,按照如下三个维度来规划服务监控指标:

  1. 每秒请求数量(Rate);
  2. 每秒错误数量(Errors);
  3. 服务响应时间(Duration)。

不难发现, USE 原则主要关注的是“资源”,比如节点和容器的资源使用情况,而 RED 原则主要关注的是“服务”,比如 kube-apiserver 或者某个应用的工作情况。这两种指标,在我今天为你讲解的 Kubernetes + Prometheus 组成的监控体系中,都是可以完全覆盖到的。

此文章为4月Day18学习笔记,内容来源于极客时间《深入剖析 Kubernetes》,强烈推荐该课程

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,456评论 5 477
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,370评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,337评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,583评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,596评论 5 365
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,572评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,936评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,595评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,850评论 1 297
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,601评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,685评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,371评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,951评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,934评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,167评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 43,636评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,411评论 2 342

推荐阅读更多精彩内容