五、希尔排序

希尔排序法(缩小增量法) 属于插入排序,是将整个无序列分割成若干小的子序列分别进行【插入排序】的方法。

我们知道,插入排序适合有序度高的数组排序。而希尔排序就是一个可以先使数组部分有序,然后通过插入排序实现高效率的排序算法。如果对插入排序没有一个明确的概念,没有实际使用过插入排序的话,建议先去把插入排序走一遍。希尔排序是基于插入排序的!下面放图解~


一个简单的希尔排序图解.png

希尔排序更高效的原因是它权衡了子数组的规模和有序性。排序之初,各个子数组都很短,排序之后子数组都是部分有序的,这两种情况都很适合插入排序。子数组部分有序的程度取决于递增序列的选择。透彻理解希尔排序的性能至今仍然是一项挑战。实际上,希尔排序是我们唯一无法准确描述其对于乱序的数组的性能特征的排序方法

public static void main(String[] args) {
        Comparable[] a = new Comparable[]{2, 6, 4, 1, 6, 9, 7, 8, 5, 23, 5, 7, 12, 54, 23, 43, 11};
        sort(a);
    }

    /**
     * 希尔排序
     *
     * @param a
     */
    public static void sort(Comparable[] a) { // 将a[]按升序排列
        int N = a.length;
        int h = 1;
        while (h < N / 3) h = 3 * h + 1;//初始h

        //此循环用于逐渐减小h的值
        while (h >= 1) {
            //从第h位往右边循环
            for (int i = h; i < N; i++) {
                //循环往左比较h有序数组
                for (int j = i; j >= h && less(a[j], a[j - h]); j -= h) {
                    exch(a, j, j - h);
                    show(a);
                }
            }
            h = h / 3;
        }
    }

    /**
     * 左边的数字比右边的小吗?
     *
     * @param v
     * @param w
     * @return
     */
    private static boolean less(Comparable v, Comparable w) {
        return v.compareTo(w) < 0;
    }

    /**
     * 交换数组两个元素
     *
     * @param a 数组
     * @param i 要交换的数组下标
     * @param j 要交换的数组下标
     */
    private static void exch(Comparable[] a, int i, int j) {
        Comparable t = a[i];
        a[i] = a[j];
        a[j] = t;
    }

    /**
     * 打印数组
     *
     * @param a
     */
    private static void show(Comparable[] a) {
        for (int i = 0; i < a.length; i++)
            System.out.print(a[i] + " ");
        System.out.println();
    }

运行程序:


image.png

上结果比较一下希尔排序和插入排序。(详细测试代码就不贴了,有兴趣的自己去实现或者文章末尾的地址有源码)


image.png

有意思的是,由插入排序到希尔排序,一个小小的改变就突破了平方级别的运行时间的屏障。这正是许多算法设计问题想要达到的目标。
有经验的程序员有时会选择希尔排序,因为对于中等大小的数组它的运行时间是可以接受的。它的代码量很小,且不需要使用额外的内存空间。在下面的几节中我们会看到更加高效的算法,但除了对于很大的 N,它们可能只会比希尔排序快两倍(可能还达不到),而且更复杂。如果你需要解决一个排序问题而又没有系统排序函数可用(例如直接接触硬件或是运行于嵌入式系统中的代码),可以先用希尔排序,然后再考虑是否值得将它替换为更加复杂的排序算法。


  本系列所有的代码都会在github同步更新,立刻前往

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,558评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,002评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,036评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,024评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,144评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,255评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,295评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,068评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,478评论 1 305
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,789评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,965评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,649评论 4 336
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,267评论 3 318
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,982评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,223评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,800评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,847评论 2 351

推荐阅读更多精彩内容