python-dataframe的合并(append, merge, concat, join)

创建2个DataFrame:

>>> df1 = pd.DataFrame(np.ones((4, 4))*1, columns=list('DCBA'), index=list('4321'))
>>> df2 = pd.DataFrame(np.ones((4, 4))*2, columns=list('FEDC'), index=list('6543'))
>>> df3 = pd.DataFrame(np.ones((4, 4))*3, columns=list('FEBA'), index=list('6521'))
>>> df1
    D    C    B    A
4  1.0  1.0  1.0  1.0
3  1.0  1.0  1.0  1.0
2  1.0  1.0  1.0  1.0
1  1.0  1.0  1.0  1.0
>>> df2
    F    E    D    C
6  2.0  2.0  2.0  2.0
5  2.0  2.0  2.0  2.0
4  2.0  2.0  2.0  2.0
3  2.0  2.0  2.0  2.0
>>> df3
    F    E    B    A
6  3.0  3.0  3.0  3.0
5  3.0  3.0  3.0  3.0
2  3.0  3.0  3.0  3.0
1  3.0  3.0  3.0  3.0

1.concat

pd.concat(objs, axis=0, join='outer', join_axes=None, ignore_index=False,
          keys=None, levels=None, names=None, verify_integrity=False,
          copy=True)

示例:

>>> pd.concat([df1, df2])
    A    B    C    D    E    F
4  1.0  1.0  1.0  1.0  NaN  NaN
3  1.0  1.0  1.0  1.0  NaN  NaN
2  1.0  1.0  1.0  1.0  NaN  NaN
1  1.0  1.0  1.0  1.0  NaN  NaN
6  NaN  NaN  2.0  2.0  2.0  2.0
5  NaN  NaN  2.0  2.0  2.0  2.0
4  NaN  NaN  2.0  2.0  2.0  2.0
3  NaN  NaN  2.0  2.0  2.0  2.0

1.1.axis

默认值:axis=0
axis=0:竖方向(index)合并,合并方向index作列表相加,非合并方向columns取并集
axis=1:横方向(columns)合并,合并方向columns作列表相加,非合并方向index取并集
axis=0:

>>> pd.concat([df1, df2], axis=0)
    A    B    C    D    E    F
4  1.0  1.0  1.0  1.0  NaN  NaN
3  1.0  1.0  1.0  1.0  NaN  NaN
2  1.0  1.0  1.0  1.0  NaN  NaN
1  1.0  1.0  1.0  1.0  NaN  NaN
6  NaN  NaN  2.0  2.0  2.0  2.0
5  NaN  NaN  2.0  2.0  2.0  2.0
4  NaN  NaN  2.0  2.0  2.0  2.0
3  NaN  NaN  2.0  2.0  2.0  2.0 

axis=1:

>>> pd.concat([df1, df2], axis=1)
    D    C    B    A    F    E    D    C
1  1.0  1.0  1.0  1.0  NaN  NaN  NaN  NaN
2  1.0  1.0  1.0  1.0  NaN  NaN  NaN  NaN
3  1.0  1.0  1.0  1.0  2.0  2.0  2.0  2.0
4  1.0  1.0  1.0  1.0  2.0  2.0  2.0  2.0
5  NaN  NaN  NaN  NaN  2.0  2.0  2.0  2.0
6  NaN  NaN  NaN  NaN  2.0  2.0  2.0  2.0

备注:原df中,取并集的行/列名称不能有重复项,即axis=0时columns不能有重复项,axis=1时index不能有重复项:

>>> df1.columns = list('DDBA')
>>> pd.concat([df1, df2], axis=0)
ValueError: Plan shapes are not aligned

1.2.join

默认值:join=‘outer’
非合并方向的行/列名称:取交集(inner),取并集(outer)。
axis=0时join='inner',columns取交集:

>>> pd.concat([df1, df2], axis=0, join='inner')
    D    C
4  1.0  1.0
3  1.0  1.0
2  1.0  1.0
1  1.0  1.0
6  2.0  2.0
5  2.0  2.0
4  2.0  2.0
3  2.0  2.0

axis=1时join='inner',index取交集:

>>> pd.concat([df1, df2], axis=1, join='inner')
    D    C    B    A    F    E    D    C
4  1.0  1.0  1.0  1.0  2.0  2.0  2.0  2.0
3  1.0  1.0  1.0  1.0  2.0  2.0  2.0  2.0

1.3.join_axes

默认值:join_axes=None,取并集
合并后,可以设置非合并方向的行/列名称,使用某个df的行/列名称
axis=0时join_axes=[df1.columns],合并后columns使用df1的:

>>> pd.concat([df1, df2], axis=0, join_axes=[df1.columns])
    D    C    B    A
4  1.0  1.0  1.0  1.0
3  1.0  1.0  1.0  1.0
2  1.0  1.0  1.0  1.0
1  1.0  1.0  1.0  1.0
6  2.0  2.0  NaN  NaN
5  2.0  2.0  NaN  NaN
4  2.0  2.0  NaN  NaN
3  2.0  2.0  NaN  NaN

axis=1时axes=[df1.index],合并后index使用df2的:

pd.concat([df1, df2], axis=1, join_axes=[df1.index])
    D    C    B    A    F    E    D    C
4  1.0  1.0  1.0  1.0  2.0  2.0  2.0  2.0
3  1.0  1.0  1.0  1.0  2.0  2.0  2.0  2.0
2  1.0  1.0  1.0  1.0  NaN  NaN  NaN  NaN
1  1.0  1.0  1.0  1.0  NaN  NaN  NaN  NaN

同时设置join和join_axes的,以join_axes为准:

>>> pd.concat([df1, df2], axis=0, join='inner', join_axes=[df1.columns])
    D    C    B    A
4  1.0  1.0  1.0  1.0
3  1.0  1.0  1.0  1.0
2  1.0  1.0  1.0  1.0
1  1.0  1.0  1.0  1.0
6  2.0  2.0  NaN  NaN
5  2.0  2.0  NaN  NaN
4  2.0  2.0  NaN  NaN
3  2.0  2.0  NaN  NaN

1.4.ignore_index

默认值:ignore_index=False
合并方向是否忽略原行/列名称,而采用系统默认的索引,即从0开始的int。
axis=0时ignore_index=True,index采用系统默认索引:

>>> pd.concat([df1, df2], axis=0, ignore_index=True)
    A    B    C    D    E    F
0  1.0  1.0  1.0  1.0  NaN  NaN
1  1.0  1.0  1.0  1.0  NaN  NaN
2  1.0  1.0  1.0  1.0  NaN  NaN
3  1.0  1.0  1.0  1.0  NaN  NaN
4  NaN  NaN  2.0  2.0  2.0  2.0
5  NaN  NaN  2.0  2.0  2.0  2.0
6  NaN  NaN  2.0  2.0  2.0  2.0
7  NaN  NaN  2.0  2.0  2.0  2.0

axis=1时ignore_index=True,columns采用系统默认索引:

>>> pd.concat([df1, df2], axis=1, ignore_index=True)
    0    1    2    3    4    5    6    7
1  1.0  1.0  1.0  1.0  NaN  NaN  NaN  NaN
2  1.0  1.0  1.0  1.0  NaN  NaN  NaN  NaN
3  1.0  1.0  1.0  1.0  2.0  2.0  2.0  2.0
4  1.0  1.0  1.0  1.0  2.0  2.0  2.0  2.0
5  NaN  NaN  NaN  NaN  2.0  2.0  2.0  2.0
6  NaN  NaN  NaN  NaN  2.0  2.0  2.0  2.0

1.5.keys

默认值:keys=None
可以加一层标签,标识行/列名称属于原来哪个df。
axis=0时设置keys:

>>> pd.concat([df1, df2],  axis=0, keys=['x', 'y'])
      A    B    C    D    E    F
x 4  1.0  1.0  1.0  1.0  NaN  NaN
  3  1.0  1.0  1.0  1.0  NaN  NaN
  2  1.0  1.0  1.0  1.0  NaN  NaN
  1  1.0  1.0  1.0  1.0  NaN  NaN
y 6  NaN  NaN  2.0  2.0  2.0  2.0
  5  NaN  NaN  2.0  2.0  2.0  2.0
  4  NaN  NaN  2.0  2.0  2.0  2.0
  3  NaN  NaN  2.0  2.0  2.0  2.0

axis=1时设置keys:

>>> pd.concat([df1, df2], axis=1, keys=['x', 'y'])
     x                   y              
     D    C    B    A    F    E    D    C
1  1.0  1.0  1.0  1.0  NaN  NaN  NaN  NaN
2  1.0  1.0  1.0  1.0  NaN  NaN  NaN  NaN
3  1.0  1.0  1.0  1.0  2.0  2.0  2.0  2.0
4  1.0  1.0  1.0  1.0  2.0  2.0  2.0  2.0
5  NaN  NaN  NaN  NaN  2.0  2.0  2.0  2.0
6  NaN  NaN  NaN  NaN  2.0  2.0  2.0  2.0 

也可以传字典取代keys:

>>> pd.concat({'x': df1, 'y': df2}, axis=0)
      A    B    C    D    E    F
x 4  1.0  1.0  1.0  1.0  NaN  NaN
  3  1.0  1.0  1.0  1.0  NaN  NaN
  2  1.0  1.0  1.0  1.0  NaN  NaN
  1  1.0  1.0  1.0  1.0  NaN  NaN
y 6  NaN  NaN  2.0  2.0  2.0  2.0
  5  NaN  NaN  2.0  2.0  2.0  2.0
  4  NaN  NaN  2.0  2.0  2.0  2.0
  3  NaN  NaN  2.0  2.0  2.0  2.0

1.6.levels

默认值:levels=None
明确行/列名称取值范围:

>>> pd.concat([df1, df2], axis=0, keys=['x', 'y'], levels=[['x', 'y', 'z', 'w']])
>>> df.index.levels
[['x', 'y', 'z', 'w'], ['1', '2', '3', '4', '5', '6']]

1.7.sort

默认值:sort=True,提示新版本会设置默认为False,并取消该参数
但0.22.0中虽然取消了,还是设置为True
非合并方向的行/列名称是否排序。例如1.1中默认axis=0时columns进行了排序,axis=1时index进行了排序。
axis=0时sort=False,columns不作排序:

>>> pd.concat([df1, df2], axis=0, sort=False)
    D    C    B    A    F    E
4  1.0  1.0  1.0  1.0  NaN  NaN
3  1.0  1.0  1.0  1.0  NaN  NaN
2  1.0  1.0  1.0  1.0  NaN  NaN
1  1.0  1.0  1.0  1.0  NaN  NaN
6  2.0  2.0  NaN  NaN  2.0  2.0
5  2.0  2.0  NaN  NaN  2.0  2.0
4  2.0  2.0  NaN  NaN  2.0  2.0
3  2.0  2.0  NaN  NaN  2.0  2.0

axis=1时sort=False,index不作排序:

>>> pd.concat([df1, df2], axis=1, sort=False)
    D    C    B    A    F    E    D    C
4  1.0  1.0  1.0  1.0  2.0  2.0  2.0  2.0
3  1.0  1.0  1.0  1.0  2.0  2.0  2.0  2.0
2  1.0  1.0  1.0  1.0  NaN  NaN  NaN  NaN
1  1.0  1.0  1.0  1.0  NaN  NaN  NaN  NaN
6  NaN  NaN  NaN  NaN  2.0  2.0  2.0  2.0
5  NaN  NaN  NaN  NaN  2.0  2.0  2.0  2.0

1.8.concat多个DataFrame

>>> pd.concat([df1, df2, df3], sort=False, join_axes=[df1.columns])
    D    C    B    A
4  1.0  1.0  1.0  1.0
3  1.0  1.0  1.0  1.0
2  1.0  1.0  1.0  1.0
1  1.0  1.0  1.0  1.0
6  2.0  2.0  NaN  NaN
5  2.0  2.0  NaN  NaN
4  2.0  2.0  NaN  NaN
3  2.0  2.0  NaN  NaN
6  NaN  NaN  3.0  3.0
5  NaN  NaN  3.0  3.0
2  NaN  NaN  3.0  3.0
1  NaN  NaN  3.0  3.0

2.append

append(self, other, ignore_index=False, verify_integrity=False)

竖方向合并df,没有axis属性
不会就地修改,而是会创建副本
示例:

>>> df1.append(df2)    # 相当于pd.concat([df1, df2])
    A    B    C    D    E    F
4  1.0  1.0  1.0  1.0  NaN  NaN
3  1.0  1.0  1.0  1.0  NaN  NaN
2  1.0  1.0  1.0  1.0  NaN  NaN
1  1.0  1.0  1.0  1.0  NaN  NaN
6  NaN  NaN  2.0  2.0  2.0  2.0
5  NaN  NaN  2.0  2.0  2.0  2.0
4  NaN  NaN  2.0  2.0  2.0  2.0
3  NaN  NaN  2.0  2.0  2.0  2.0  

2.1.ignore_index属性

>>> df1.append(df2, ignore_index=True)
    A    B    C    D    E    F
0  1.0  1.0  1.0  1.0  NaN  NaN
1  1.0  1.0  1.0  1.0  NaN  NaN
2  1.0  1.0  1.0  1.0  NaN  NaN
3  1.0  1.0  1.0  1.0  NaN  NaN
4  NaN  NaN  2.0  2.0  2.0  2.0
5  NaN  NaN  2.0  2.0  2.0  2.0
6  NaN  NaN  2.0  2.0  2.0  2.0
7  NaN  NaN  2.0  2.0  2.0  2.0

2.2.append多个DataFrame

和concat相同,append也支持append多个DataFrame

>>> df1.append([df2, df3], ignore_index=True)
     A    B    C    D    E    F
0   1.0  1.0  1.0  1.0  NaN  NaN
1   1.0  1.0  1.0  1.0  NaN  NaN
2   1.0  1.0  1.0  1.0  NaN  NaN
3   1.0  1.0  1.0  1.0  NaN  NaN
4   NaN  NaN  2.0  2.0  2.0  2.0
5   NaN  NaN  2.0  2.0  2.0  2.0
6   NaN  NaN  2.0  2.0  2.0  2.0
7   NaN  NaN  2.0  2.0  2.0  2.0
8   3.0  3.0  NaN  NaN  3.0  3.0
9   3.0  3.0  NaN  NaN  3.0  3.0
10  3.0  3.0  NaN  NaN  3.0  3.0
11  3.0  3.0  NaN  NaN  3.0  3.0

3.merge

pd.merge(left, right, how='inner', on=None, left_on=None, right_on=None,
         left_index=False, right_index=False, sort=True,
         suffixes=('_x', '_y'), copy=True, indicator=False,
         validate=None)

示例:

>>> left = pd.DataFrame({'A': ['a0', 'a1', 'a2', 'a3'],
                         'B': ['b0', 'b1', 'b2', 'b3'],
                         'k1': ['x', 'x', 'y', 'y']})
>>> right = pd.DataFrame({'C': ['c1', 'c2', 'c3', 'c4'],
                          'D': ['d1', 'd2', 'd3', 'd4'],
                          'k1': ['y', 'y', 'z', 'z']})
>>> left
    A   B  k1
0  a0  b0  x
1  a1  b1  x
2  a2  b2  y
3  a3  b3  y
>>> right
    C   D  k1
0  c1  d1  y
1  c2  d2  y
2  c3  d3  z
3  c4  d4  z

对df1和df2进行merge:

>>> pd.merge(left, right)
    A   B  k1  C   D
0  a2  b2  y  c1  d1
1  a2  b2  y  c2  d2
2  a3  b3  y  c1  d1
3  a3  b3  y  c2  d2

可以看到只有df1和df2的key1=y的行保留了下来,即默认合并后只保留有共同列项并且值相等行(即交集)。
本例中left和right的k1=y分别有2个,最终构成了2*2=4行。
如果没有共同列会报错:

>>> del left['k1']
>>> pd.merge(left, right)
pandas.errors.MergeError: No common columns to perform merge on

3.1.on属性

新增一个共同列,但没有相等的值,发现合并返回是空列表,因为默认只保留所有共同列都相等的行:

>>> left['k2'] = list('1234')
>>> right['k2'] = list('5678')
>>> pd.merge(left, right)
Empty DataFrame
Columns: [B, A, k1, k2, F, E]
Index: []

可以指定on,设定合并基准列,就可以根据k1进行合并,并且left和right共同列k2会同时变换名称后保留下来:

>>> pd.merge(left, right, on='k1')
    A   B  k1  k2_x   C   D   k2_y
0  a2  b2  y     3    c1  d1   5
1  a2  b2  y     3    c2  d2   6
2  a3  b3  y     4    c1  d1   5
3  a3  b3  y     4    c2  d2   6

默认值:on的默认值是所有共同列,本例为:on=['k1', 'k2']

3.2.how属性

how取值范围:'inner', 'outer', 'left', 'right'
默认值:how='inner'
‘inner’:共同列的值必须完全相等:

>>> pd.merge(left, right, on='k1', how='inner')
    A   B  k1  k2_x   C   D   k2_y
0  a2  b2  y     3    c1  d1   5
1  a2  b2  y     3    c2  d2   6
2  a3  b3  y     4    c1  d1   5
3  a3  b3  y     4    c2  d2   6

‘outer’:共同列的值都会保留,left或right在共同列上的差集,会对它们的缺失列项的值赋上NaN:

>>> pd.merge(left, right, on='k1', how='outer')
    A    B k1   k2_x  C    D  k2_y
0   a0   b0  x    1  NaN  NaN  NaN
1   a1   b1  x    2  NaN  NaN  NaN
2   a2   b2  y    3   c1   d1    5
3   a2   b2  y    3   c2   d2    6
4   a3   b3  y    4   c1   d1    5
5   a3   b3  y    4   c2   d2    6
6  NaN  NaN  z  NaN   c3   d3    7
7  NaN  NaN  z  NaN   c4   d4    8

‘left’:根据左边的DataFrame确定共同列的保留值,右边缺失列项的值赋上NaN:

pd.merge(left, right, on='k1', how='left')
    A   B k1  k2_x  C    D   k2_y
0  a0  b0  x    1  NaN  NaN  NaN
1  a1  b1  x    2  NaN  NaN  NaN
2  a2  b2  y    3   c1   d1    5
3  a2  b2  y    3   c2   d2    6
4  a3  b3  y    4   c1   d1    5
5  a3  b3  y    4   c2   d2    6

‘right’:根据右边的DataFrame确定共同列的保留值,左边缺失列项的值赋上NaN:

>>> pd.merge(left, right, on='k1', how='right')
     A    B k1  k2_x  C   D   k2_y
0   a2   b2  y    3  c1  d1    5
1   a3   b3  y    4  c1  d1    5
2   a2   b2  y    3  c2  d2    6
3   a3   b3  y    4  c2  d2    6
4  NaN  NaN  z  NaN  c3  d3    7
5  NaN  NaN  z  NaN  c4  d4    8

3.3.indicator

默认值:indicator=False,不显示合并方式
设置True表示显示合并方式,即left / right / both:

>>> pd.merge(left, right, on='k1', how='outer', indicator=True)
     A    B k1  k2_x  C    D   k2_y     _merge
0   a0   b0  x    1  NaN  NaN  NaN   left_only
1   a1   b1  x    2  NaN  NaN  NaN   left_only
2   a2   b2  y    3   c1   d1    5        both
3   a2   b2  y    3   c2   d2    6        both
4   a3   b3  y    4   c1   d1    5        both
5   a3   b3  y    4   c2   d2    6        both
6  NaN  NaN  z  NaN   c3   d3    7  right_only
7  NaN  NaN  z  NaN   c4   d4    8  right_only

4 join

4.1 语法

DataFrame.join(other, on=None, how='left', lsuffix='', rsuffix='', sort=False)[source]

Join columns with other DataFrame either on index or on a key column. Efficiently join multiple DataFrame objects by index at once by passing a list.
Parameters
otherDataFrame, Series, or list of DataFrame
Index should be similar to one of the columns in this one. If a Series is passed, its name attribute must be set, and that will be used as the column name in the resulting joined DataFrame.
onstr, list of str, or array-like, optional
Column or index level name(s) in the caller to join on the index in other, otherwise joins index-on-index. If multiple values given, the other DataFrame must have a MultiIndex. Can pass an array as the join key if it is not already contained in the calling DataFrame. Like an Excel VLOOKUP operation.
how{‘left’, ‘right’, ‘outer’, ‘inner’}, default ‘left’
How to handle the operation of the two objects.

  • left: use calling frame’s index (or column if on is specified)
  • right: use other’s index.
  • outer: form union of calling frame’s index (or column if on is specified) with other’s index, and sort it. lexicographically.
  • inner: form intersection of calling frame’s index (or column if on is specified) with other’s index, preserving the order of the calling’s one.
    lsuffixstr, default ‘’
    Suffix to use from left frame’s overlapping columns.
    rsuffixstr, default ‘’
    Suffix to use from right frame’s overlapping columns.
    sortbool, default False
    Order result DataFrame lexicographically by the join key. If False, the order of the join key depends on the join type (how keyword).
    Returns
    DataFrame
    A dataframe containing columns from both the caller and other.

4.2 实例

>>>df.join(other, lsuffix='_caller', rsuffix='_other')
  key_caller   A key_other    B
0         K0  A0        K0   B0
1         K1  A1        K1   B1
2         K2  A2        K2   B2
3         K3  A3       NaN  NaN
4         K4  A4       NaN  NaN
5         K5  A5       NaN  NaN
>>>df.join(other.set_index('key'), on='key')
  key   A    B
0  K0  A0   B0
1  K1  A1   B1
2  K2  A2   B2
3  K3  A3  NaN
4  K4  A4  NaN
5  K5  A5  NaN
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,544评论 6 501
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,430评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,764评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,193评论 1 292
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,216评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,182评论 1 299
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,063评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,917评论 0 274
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,329评论 1 310
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,543评论 2 332
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,722评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,425评论 5 343
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,019评论 3 326
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,671评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,825评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,729评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,614评论 2 353